Advertisement
more top stories »

University of Texas

— Electronics

World's smallest nanomotor could power cell-sized nanobots for drug delivery

By - May 20, 2014 3 Pictures
Scientists at the Cockrell School of Engineering at the University of Texas have built and tested what appears to be the world's smallest, fastest, and longest-running nanomotor yet – so small that it could fit inside a single cell. The advance could be used to power nanobots that would deliver specific drugs to individual living cells inside the human body. Read More
— Medical

Researchers turn to GPUs to improve cancer therapy

By - May 15, 2014 2 Pictures
Medical physicists at the University of Texas Southwestern Medical Center are latching on to advances in the computational speed of graphics processing units (GPUs) to drastically reduce the time required to calculate radiation therapy plans. The approach also increases the accuracy of calculations, allowing for faster, more precise, and more adaptable treatment of cancer patients. Read More
— Space

Sun's "sibling" could help us understand how life got started

By - May 12, 2014 2 Pictures
Researchers at the University of Texas have identified a star that formed in the same star cluster as our Sun. Dubbed HD 162826, the star is 15 percent more massive than the Sun and resides 110 light-years away. It's hoped the discovery of this "sibling" will help us understand more about where and how the solar system originated, and might also point us to the best candidates for finding extraterrestrial life. Read More
— Science

Powerful artificial muscles made from ... fishing line?

By - February 24, 2014 2 Pictures
Artificial muscles could find use in a wide range of applications, including prosthetic limbs, robotics, exoskeletons, or pretty much any situation in which hydraulics or electric motors just aren't a practical means of moving objects. Scientists have been working on such muscles for a number of years, using materials like vanadium dioxide, graphene, carbon nanotubes and dielectric elastomers. Now, however, some of those same scientists have discovered that very powerful artificial muscles can be made from much more down-to-earth materials – regular polymer fishing line, and metal-coated nylon sewing thread. Read More
— Science

World's smallest windmills to power cell phones

By - January 13, 2014 3 Pictures
Professor J.C. Chiao and his postdoc Dr. Smitha Rao of the University of Texas at Arlington have developed a MEMS-based nickel alloy windmill so small that 10 could be mounted on a single grain of rice. Aimed at very-small-scale energy harvesting applications, these windmills could recharge batteries for smartphones, and directly power ultra-low-power electronic devices. Read More
— Health and Wellbeing

Drugs to fix "misfolded" proteins could cure a range of diseases

By - December 9, 2013 1 Picture
Proteins adopt their functional three-dimensional structure by the folding of a linear chain of amino acids. Gene mutation can cause this folding process to go awry, resulting in "misfolded" proteins that are inactive or, in worse cases, exhibit modified or toxic functionality. This is the cause of a wide range of diseases, but researchers have developed a technique that fixes these misfolded proteins, allowing them to perform their intended function, thereby providing a potential cure for a number of diseases. Read More
— Science

Oops! Invisibility cloaks actually make objects easier to see

By - November 12, 2013 4 Pictures
It's often a case of swings and roundabouts. If you save money by buying a house out of town, you spend more time and money commuting. If you really measure the momentum of an electron, you have no idea where the little guy is located. And now, according to a new analysis by a pair of University of Texas electrical engineers, the better an object is hidden by an invisibility cloak at a given wavelength of light, the easier it is to see at other wavelengths. Swings and roundabouts. Read More

Subscribe to Gizmag's email newsletter

Advertisement