Advertisement
more top stories »

University of Texas


— Science

Fly-inspired tech could find use in better hearing aids

When it comes to animals with good hearing, flies might not be the first one you'd think of. The Ormia ochracea fly, however, has a unique hearing mechanism that allows it to precisely determine the location of a cricket based on its chirps ... it then deposits its larvae on the cricket, which ultimately consume the poor insect. Scientists at the University of Texas Austin have now duplicated that mechanism, with hopes that it could find use in applications such as next-generation hearing aids. Read More
— Electronics

World's smallest nanomotor could power cell-sized nanobots for drug delivery

Scientists at the Cockrell School of Engineering at the University of Texas have built and tested what appears to be the world's smallest, fastest, and longest-running nanomotor yet – so small that it could fit inside a single cell. The advance could be used to power nanobots that would deliver specific drugs to individual living cells inside the human body. Read More
— Medical

Researchers turn to GPUs to improve cancer therapy

Medical physicists at the University of Texas Southwestern Medical Center are latching on to advances in the computational speed of graphics processing units (GPUs) to drastically reduce the time required to calculate radiation therapy plans. The approach also increases the accuracy of calculations, allowing for faster, more precise, and more adaptable treatment of cancer patients. Read More
— Space

Sun's "sibling" could help us understand how life got started

Researchers at the University of Texas have identified a star that formed in the same star cluster as our Sun. Dubbed HD 162826, the star is 15 percent more massive than the Sun and resides 110 light-years away. It's hoped the discovery of this "sibling" will help us understand more about where and how the solar system originated, and might also point us to the best candidates for finding extraterrestrial life. Read More
— Science

Powerful artificial muscles made from ... fishing line?

Artificial muscles could find use in a wide range of applications, including prosthetic limbs, robotics, exoskeletons, or pretty much any situation in which hydraulics or electric motors just aren't a practical means of moving objects. Scientists have been working on such muscles for a number of years, using materials like vanadium dioxide, graphene, carbon nanotubes and dielectric elastomers. Now, however, some of those same scientists have discovered that very powerful artificial muscles can be made from much more down-to-earth materials – regular polymer fishing line, and metal-coated nylon sewing thread. Read More
— Science

World's smallest windmills to power cell phones

Professor J.C. Chiao and his postdoc Dr. Smitha Rao of the University of Texas at Arlington have developed a MEMS-based nickel alloy windmill so small that 10 could be mounted on a single grain of rice. Aimed at very-small-scale energy harvesting applications, these windmills could recharge batteries for smartphones, and directly power ultra-low-power electronic devices. Read More
— Health & Wellbeing

Drugs to fix "misfolded" proteins could cure a range of diseases

Proteins adopt their functional three-dimensional structure by the folding of a linear chain of amino acids. Gene mutation can cause this folding process to go awry, resulting in "misfolded" proteins that are inactive or, in worse cases, exhibit modified or toxic functionality. This is the cause of a wide range of diseases, but researchers have developed a technique that fixes these misfolded proteins, allowing them to perform their intended function, thereby providing a potential cure for a number of diseases. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement