Advertisement

University of California Santa Barbara

— Materials

Researchers develop high-performance underwater glue inspired by mussels

UC Santa Barbara scientists have replicated the uncanny underwater adhesive capacity of mussels – which has previously inspired a surgical glue – in a versatile and strong synthetic material. The ultra-thin material boasts up to 10 times the effectiveness of prior wet/underwater adhesives, and its low molecular weight and functional properties means that it can be used to boost the performance of existing bulk adhesives, as well as in such varied applications as dentistry, nanofabrication, and underwater repair.

Read More
— Medical

Insulin releasing patch draws oral diabetes treatments closer

Of the hundreds of million people around the world that suffer from diabetes, a sizeable portion need to subject themselves to daily insulin injections. But a more palatable way of keeping blood glucose levels in check may be on the way, with scientists developing a patch that attaches to the intestinal wall and releases the hormone after being swallowed in the form of a capsule.

Read More
— Electronics

Electronic memory may bring bionic brain one step closer

Using a matrix of nano-sized memristors, researchers working at the Royal Melbourne Institute of Technology (RMIT) and the University of California, Santa Barbara claim to have constructed the world’s first electronic memory cell that effectively mimics the analog process of the human brain. By storing memories as multiple threads of varying information, rather than a collection of ones and zeroes, scientists believe that this device may prove to be the first step towards creating a completely artificial, bionic brain.

Read More
— Physics

First-ever quantum device that detects and corrects its own errors

Before the dream of quantum computing is realized, a number of inherent problems must first be solved. One of these is the ability to maintain a stable memory system that overcomes the intrinsic instability of the basic unit of information in quantum computing – the quantum bit or "qubit". To address this problem, Physicists working at the University of California Santa Barbara (UC Santa Barbara) claim to have created breakthrough circuitry that continuously self-checks for inaccuracies to consistently maintain the error-free status of the quantum memory. Read More
— Science

Scientists propose destroying asteroids with sun-powered laser array

This past Friday was not a good day for asteroid-human relations with asteroid 2012 DA14 passing a mere 27,700 km (17,200 miles) from the Earth just a few hours after a meteor exploded over the Russian city of Chelyabinsk, damaging hundreds of buildings and injuring thousands. Scientists have been quick to point out that both of these events – a meteor exploding over a populated area and a large asteroid passing through Earth's geosynchronous orbit – are quite rare, but when the worst case scenario is the complete annihilation of all life on Earth, it's probably best to be prepared. That's why researchers in California recently proposed DE-STAR – a system which could potentially harness the sun's energy to dissolve wayward space rocks up to ten times larger than 2012 DA14 with a vaporizing laser. Read More
— Electronics

Quantum computer with separate CPU and memory represents significant breakthrough

John Martinis’ research group at the University of California at Santa Barbara has created the first quantum computer with the quantum equivalent of conventional Von Neumann architecture. This general-purpose programmable quantum computer is realized using superconducting circuits and offers greater potential for large-scale quantum computing than the one-problem devices that have been demonstrated in this emerging field to date. Read More
— Science

Diamonds boost processing speeds in quantum computers

Scientists at UC Santa Barbara have made important advances in the field of spintronics by demonstrating the ability to electrically manipulate, at room temperatures, the quantum states of electrons trapped in the atomic structural defects of diamond crystals. Despite previous indications to the contrary, such quantum states can be manipulated very quickly, even at gigahertz frequencies, paving the way to significantly faster quantum computing. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement