Introducing the Gizmag Store

Transistor

The world's first molybdenite microchip has been successfully tested in Switzerland.

Back in February, Darren Quick wrote about the unique properties of Molybdenite and how this material, previously used mostly as a lubricant, could actually outshine silicon in the construction of transistors and other electronic circuits. In brief: it's much more energy efficient than silicon, and you can slice it into strips just three atoms thick - meaning that you can make transistors as much as three times smaller than before, and make them flexible to boot. Well, the technology has now been proven with the successful testing of the world's first molybdenite microchip in Switzerland. Does this mean Lausanne will become known as "Molybdenite Valley?"  Read More

Squids have provided the key ingredient for a proton-conducting transistor, that may allow...

When it comes to sending and receiving information, man-made devices utilize negatively-charged particles commonly known as electrons. Biological systems such as human bodies, on the other hand, use protons via positively charged hydrogen atoms or ions. This would indicate that there is something of a language barrier, when we try to develop electronic devices that can communicate with living systems. That barrier could be on its way down, however, as scientists from the University of Washington have developed a transistor that can conduct pulses of protons - and they've done it with some help from our friends the cephalopods.  Read More

Intel's 3-D transistors to keep pace with Moore's Law

NASA, the double-helix model, Elvis ... there's a long list of things that emerged during the 1950s which still resonate strongly in 2011, but none more so than the humble silicon transistor. Transistors are the bricks with which the shiny house of modern consumer electronics has been built, but for more than 50 years these bricks have been limited to two dimensions. Now there's a third. Intel has announced that it is putting its revolutionary Tri-Gate 3-D transistor into mass production. The first 22nm microprocessor (codenamed Ivy Bridge) to use the transistors will be rolled-out later this year, delivering huge gains in performance and efficiency compared with chips that use current 2-D planar transistors and helping keep pace with Moore's Law.  Read More

Graphene is a one-atom-thick planar sheet of carbon atoms that are densely packed in a hon...

Graphene has already brought us the world’s smallest transistor, a triple-mode, single transistor amplifier and a supercapacitor that can store as much energy as a battery while recharging in seconds. And these are sure to just be the tip of the iceberg. The latest breakthrough from the wonderful world of graphene is a new graphene field effect transistor (GFET) that boasts a record high-switching performance. The device promises improved performance for future electronic devices and means graphene could potentially replace silicon, or at least be used side by side with silicon, in electronic devices.  Read More

Molybdenite could be used to make smaller and more energy efficient transistors

Researchers have uncovered a material that they say has distinct advantages over traditional silicon and even graphene for use in electronics. Called molybdenite (MoS2), this mineral is abundant in nature and is commonly used as an element in steel alloys or, thanks to its similarity in appearance and feel to graphite, as an additive in lubricant. But the mineral hadn’t been studied for use in electronics, which appears to have been an oversight with new research showing that molybdenite is a very effective semiconductor that could enable smaller and more energy efficient transistors, computer chips and solar cells.  Read More

The MPQ/EPFL microresonator, which couples light with vibrations (Photo: EPFL)

Researchers from Germany’s Max Planck Institute of Quantum Optics (MPQ) and the Swiss Ecole Polytechnique Federale de Lausanne (EPFL) have created a microresonator that produces vibrations from laser light. The device also uses one laser beam to control the intensity of another, thus making it essentially an optical transistor. The technology could have big implications in fields such as telecommunications.  Read More

Metal-insulator-metal (MIM) diodes might just be the technology that allows electronics achieve the next big leap in processing speed. Research into diode design conducted at the Oregon State University (OSU) has revealed this week cheaper and easier to manufacture MIM diodes that will also eliminate speed restrictions of electronic circuits that have baffled materials researchers since the 1960's.  Read More

High-capacity communications link at river crossing

Fujitsu has announced a transmission power amplifier that is set to extend the transmission range of wireless communications networks by six times. The company's newly development gallium nitride (GaN) High Electron Mobility Transistor (HEMT) has achieved the world's highest output for wireless communications in the millimeter-wave W band.  Read More

The new triple-mode, single transistor amplifier could replace many traditional transistor...

Graphene has already brought us the world’s smallest transistortwice – and now the one atom thick form of carbon that recently won its discoverers the Nobel Prize has been used to create a triple-mode, single-transistor amplifier. The new transistor has the potential to replace many traditional transistors in a typical integrated circuit and its developers say the device could become a key component in future electronic circuits.  Read More

Don't bolt your doors in fear of cyborgs and hybrid human-robots yet (Original image - Fli...

Scientists have begun integrating electronics into biology, but don't bolt your doors in fear of cyborgs and hybrid human-robots yet! Researchers from the Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), have found a way to implant minute silicon chips into living cells and use them as intracellular sensors. This bio-nanotechnological advancement could tell us a lot about how our cells are working at a nano level, and have widespread implications for early detection of diseases, and new cellular repair mechanisms.  Read More

Looking for something? Search our 26,540 articles