2014 Paris Motor Show highlights

Thin Film

A newly developed bendable thin-film lithium-ion battery could help bridge the gap to high...

Researchers at the Korea Advanced Institute of Science and Technology (KAIST) have developed a promising solid state, thin-film lithium-ion battery that claims the highest energy density ever achieved for a flexible battery. The new design, which showed for the first time that high-performance thin films can be used for flexible batteries, may be commercialized as early as next year.  Read More

Under UV light, the nanofibrous film detects trace 2,4-DNT explosive buried in a flower po...

Engineers at the University of Connecticut (UConn) have developed a fluorescent nanofibrous film capable of detecting ultra-trace levels of explosive vapors from landmines and other buried explosive devices. In the presence of explosive molecules, the film’s fluorescence is suppressed when exposed to ultraviolet (UV) light. In this way, the lightweight film, which is similar to paper, could be rolled out over suspect areas to mark the location of explosive devices.  Read More

New technology based on the eye of a moth improves the quality of X-ray images without com...

To increase stealth and evade predators, the moth has evolved a remarkable eye that, rather than reflecting light, absorbs it almost completely. Engineers have mimicked its nanostructure in the past to design better solar panel coatings and antireflective surfaces, and are now using the same principle to design a thin film that will absorb radiation from X-ray machines more effectively, exposing patients to a significantly lower risk while obtaining higher quality imaging.  Read More

By sandwiching a layer of ferric chloride molecules between two sheets of graphene (pictur...

Currently, virtually all touchscreen displays found in our electronic devices rely on a coating of indium tin oxide (ITO). It is used because of its electrical conductivity, its optical transparency, and the ease with which it can be deposited onto a display as a thin film. Using graphene, researchers at the University of Exeter have developed a viable alternative to increasingly expensive ITO that they claim is the “most transparent, lightweight and flexible material ever for conducting electricity.”  Read More

Scientists have set a new record for thin-film solar cell efficiency, using 'bumpy' silver...

Researchers from Australia's Swinburne University of Technology have announced the development of the world's most efficient broadband nanoplasmonic solar cells. The scientists improved the performance of existing thin-film cells by incorporating nucleated or "bumpy" gold and silver nanoparticles. By doing so, they were able to boost the cells' absolute efficiency up to 8.1 percent.  Read More

Postdoctoral researcher Yu Zhu with the graphene-based hybrid film on a flexible plastic s...

Graphene promises to revolutionize electronics but we’re still waiting for graphene-based technologies to hit the market. Rice University researchers have now created transparent, graphene-based electrodes that they say could be the “killer app” that finally puts graphene into the commercial spotlight. The graphene-based electrodes could be used to replace the increasingly expensive indium tin oxide (ITO) in touch-screen displays, photovoltaic solar cells and LED lighting.  Read More

Researchers have created a thin film flexible smartphone, known as the Paperphone (Photos:...

Researchers from the Human Media Lab at Canada's Queen's University have created a fully-functioning floppy E-Ink smartphone, which they also refer to as a paper computer. Like its thicker, rigid-bodied counterparts, the Paperphone can do things like making and receiving calls, storing e-books, and playing music. Unlike them, however, it conforms to the shape of its user's pocket or purse, and can even be operated through bending actions.  Read More

A diagram of a lithium-ion battery constructed using Braun's nanostructured bicontinuous c...

Of all the criticisms of electric vehicles, probably the most commonly-heard is that their batteries take too long to recharge – after all, limited range wouldn’t be such a big deal if the cars could be juiced up while out and about, in just a few minutes. Well, while no one is promising anything, new batteries developed at the University of Illinois, Urbana-Champaign do indeed look like they might be a step very much in the right direction. They are said to offer all the advantages of capacitors and batteries, in one unit.  Read More

A microchannel created using the laser scribing technique (Photo: Purdue University School...

A new manufacturing method that incorporates laser technology may result in thin film solar panels that are less expensive and more efficient than anything presently on the market. Currently, a stylus is used to mechanically etch microchannels into such panels, which electrically connect the individual solar cells and allow them to form an array. Researchers from Indiana’s Purdue University, however, are developing a technique in which an ultrafast pulsing laser is used to do the etching. Not only will it hopefully be quicker and cheaper than mechanical “scribing,” but it should also produce cleaner, sharper microchannels that offer superior performance.  Read More

A miniature helicopter is powered by electricity generated by the previous SolarWindow pro...

Over the past several years, a number of companies and institutions have been developing technologies that could allow windows to double as solar panels. These have included EnSol’s metal nanoparticle-based spray-on product, RSi’s photovoltaic glass and Octillion’s NanoPower window. Last September, Maryland-based New Energy Technologies joined the party by demonstrating a 4 x 4 inch (10.2 x 10.2 cm) prototype of its SolarWindow product. This Tuesday, the company unveiled a working 12 x 12 inch (30.5 x 30.5 cm) prototype, which takes it significantly closer to becoming commercially-viable.  Read More

Looking for something? Search our 28,960 articles