Advertisement
more top stories »

superconductor


— Physics

New and unusual phase of matter could shed light on high-temperature superconductivity

Physicists working at the California Institute of Technology (Caltech) have discovered a new phase of matter with a highly unusual arrangement of electrons that could see the creation of innovative electronic devices with novel functionalities never before considered. Not quantifiable as a conventional metal, an insulator, or a type of magnet, this previously unknown state may also help answer a range of fundamental questions in the field of "high-temperature" superconductivity.

Read More
— Physics

New record set for high-temperature superconductivity

With their zero electrical resistance and remarkable magnetic and thermal conductive properties, superconductors have the potential to revolutionize numerous technologies. The trouble is, they work best at cryogenic temperatures in the neighborhood of absolute zero (-273° C, -459° F). As part of the quest to come up with a room temperature superconductor, researchers from the Max Planck Institute for Chemistry and the Johannes Gutenberg University Mainz have developed a new record-high-temperature superconductor – and it smells like rotten eggs.

Read More
— Energy

ARC reactor design uses superconducting magnets to draw fusion power closer

Fusion power can seem a bit like the last bus at night; it's always coming, but never arrives. MIT is working to change that with a new compact tokamak fusion reactor design based on the latest magnetic superconductor technology. The ARC (affordable, robust, compact) reactor design promises smaller, cheaper reactors that could make fusion power practical within 10 years.

Read More
— Physics

Cesium atoms get a shake-up to create excitation in superfluid

Helium-4 superfluid is a fascinating substance. With properties that seemingly defy normal physics, it leaks straight through glass, bubbles up out of containers, flows around objects and even climbs up walls. As if superfluid helium-4 was not strange enough, in 1941 it was also predicted that it should contain an exotic, particle-like excitation – a quasiparticle – called a roton. After many years of trying to verify this prediction, researchers at the University of California now claim to have successfully created a roton structure in an atomic superfluid of cesium-133. Read More
— Physics

Researchers discover a universal law of superconductivity

The immutable laws that govern our universe – such as those that reign over the observable world in classical mechanics and those that rule the atomic physics world – are at the core of all of our scientific principles. They not only provide consistent, repeatable, and accurate rules that allow calculations and experiments to be tested or verified, they also help us make sense of the workings of the cosmos. MIT researchers claim to have discovered a new universal law for superconductors that, if proved accurate, would bring the physics of superconductors in line with other universal laws and advance the likes of superconducting circuits for quantum and super low-power computing. Read More
— Environment

Superconducting coil to slash costs and improve efficiency of direct-drive wind turbines

Conventional offshore wind turbines are expensive and complicated pieces of machinery – in a large part because of their complex and maintenance-intensive gearboxes. Dr Shahriar Hossain from the University of Wollongong in Australia is looking to slash production costs and drastically improve efficiency replacing these gearboxes with a superconducting coil. Read More
— Science

Practical magnetic levitating transmission gear system loses its teeth

A new transmission device that uses magnetic levitation to almost completely eliminate friction and wear has been developed as part of the MAGDRIVE research project, a collaboration of seven European nations we looked at back in 2010. The creation of the unit entailed the development of a magnetic gear reducer and corresponding frictionless magnetic axles. Aimed primarily for use in spacecraft due to its extended mechanical life, the system is also adaptable for use in automobiles, railways, and aircraft. Read More
— Science

Scientists use light to alter properties of high temperature superconductors

When people have a difficult problem they often talk about “shining a light on it.” Creating and controlling high-temperature superconductors has been a problem for scientists and engineers for over two decades. Now, Yoram Dagan, a professor at Tel Aviv University's (TAU) Department of Physics and Center for Nanoscience and Nanotechnology, has made a breakthrough in superconductors by literally shining a light on them. By doing this, he is able to control their properties. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement