Advertisement

superconductor

Materials

Laser pulses keep superconductors working at higher temperatures

An international team of scientists led by the Max Planck Institute in Hamburg, Germany, has found a new mechanism allowing superconducting materials to maintain their properties at much higher temperatures than was previously possible. The advance brings the dream of mainstream maglev trains and highly energy-efficient electronics a little closer to reality.Read More

Physics

New and unusual phase of matter could shed light on high-temperature superconductivity

Physicists working at the California Institute of Technology (Caltech) have discovered a new phase of matter with a highly unusual arrangement of electrons that could see the creation of innovative electronic devices with novel functionalities never before considered. Not quantifiable as a conventional metal, an insulator, or a type of magnet, this previously unknown state may also help answer a range of fundamental questions in the field of "high-temperature" superconductivity.Read More

Physics

New record set for high-temperature superconductivity

With their zero electrical resistance and remarkable magnetic and thermal conductive properties, superconductors have the potential to revolutionize numerous technologies. The trouble is, they work best at cryogenic temperatures in the neighborhood of absolute zero (-273° C, -459° F). As part of the quest to come up with a room temperature superconductor, researchers from the Max Planck Institute for Chemistry and the Johannes Gutenberg University Mainz have developed a new record-high-temperature superconductor – and it smells like rotten eggs.Read More

Physics

Cesium atoms get a shake-up to create excitation in superfluid

Helium-4 superfluid is a fascinating substance. With properties that seemingly defy normal physics, it leaks straight through glass, bubbles up out of containers, flows around objects and even climbs up walls. As if superfluid helium-4 was not strange enough, in 1941 it was also predicted that it should contain an exotic, particle-like excitation – a quasiparticle – called a roton. After many years of trying to verify this prediction, researchers at the University of California now claim to have successfully created a roton structure in an atomic superfluid of cesium-133.Read More

Physics

Researchers discover a universal law of superconductivity

The immutable laws that govern our universe – such as those that reign over the observable world in classical mechanics and those that rule the atomic physics world – are at the core of all of our scientific principles. They not only provide consistent, repeatable, and accurate rules that allow calculations and experiments to be tested or verified, they also help us make sense of the workings of the cosmos. MIT researchers claim to have discovered a new universal law for superconductors that, if proved accurate, would bring the physics of superconductors in line with other universal laws and advance the likes of superconducting circuits for quantum and super low-power computing.Read More

Environment

Superconducting coil to slash costs and improve efficiency of direct-drive wind turbines

Conventional offshore wind turbines are expensive and complicated pieces of machinery – in a large part because of their complex and maintenance-intensive gearboxes. Dr Shahriar Hossain from the University of Wollongong in Australia is looking to slash production costs and drastically improve efficiency replacing these gearboxes with a superconducting coil.Read More

Science

Practical magnetic levitating transmission gear system loses its teeth

A new transmission device that uses magnetic levitation to almost completely eliminate friction and wear has been developed as part of the MAGDRIVE research project, a collaboration of seven European nations we looked at back in 2010. The creation of the unit entailed the development of a magnetic gear reducer and corresponding frictionless magnetic axles. Aimed primarily for use in spacecraft due to its extended mechanical life, the system is also adaptable for use in automobiles, railways, and aircraft.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement