Advertisement

Stretchable Electronics

Researchers at Purdue University have shown how standard inkjet-printers can be employed to produce flexible electronic circuits from liquid-metal nanoparticle inks. This simple printing solution promises faster, cheaper, and easier production of stretchable, bendable electronics for clothing, soft robotics, and wearable devices. Read More
If flexible electronic devices are ever going to become practical for real-world use, the circuitry incorporated into them will have to be tough and resilient. We're already seeing progress in that direction, including electrical wires that can still carry a current while being stretched. However, what if the application calls for the use of fiber optics? Well, scientists from Belgium may have that covered, too. They've created optical circuits utilizing what they believe are the world's first stretchable optical interconnections. Read More
In 2012, Dr. Yong Zhu and a team at North Carolina State University created highly conductive and elastic conductors made from silver nanowires. At the time, Dr. Zhu said the conductors could be used to create stretchable electronics with applications in wearable, multifunctional sensors. Two years later, the NC State researchers have developed just such a sensor. Read More
Scientists at the New Jersey Institute of Technology have joined the ranks of those from the Korea Advanced Institute of Science and Technology, Stanford University and LG, by creating prototype flexible batteries. Designed for use in electronic devices with flexible displays, they could conceivably be manufactured in any size or shape, or even made at home. Read More
Thanks to the advent of stretchable electronics, we’re currently witnessing the development of things like smart fabrics, bendable displays, and even pressure-sensitive skin for robots. In many potential applications, however, the usefulness of such electronics would be limited if they still had to be hooked up to a rigid battery. In response to that problem, a team of scientists have recently created – you guessed it – a stretchable lithium-ion battery. Read More
Last month, we heard about how a team led by North Carolina State University’s Dr. Michael Dickey had created an electrical wire that could be stretched up to eight times its regular length ... and still carry a current. This was possible thanks to a conductive liquid metal alloy of gallium and indium, contained inside the wire’s elastic polymer outer housing. Now, Dickey's team has developed a new wire that not only can be stretched, but that will heal itself when severed. Read More
Things like earbud cords have a nasty way of getting hooked on things and breaking. Such incidences may become a lot less common, however, as scientists from North Carolina State University have created conductive wires that stay intact even when stretched up to eight times their regular length. Read More
Earlier this year, a team led by North Carolina State University’s Dr. Yong Zhu reported success in creating elastic conductors made from carbon nanotubes. Such conductors could be used in stretchable electronics, which could in turn find use in things like bendable displays, smart fabrics, or even touch-sensitive robot skin. Now, he has made some more elastic conductors, but this time using silver nanowires – according to Zhu, they offer some big advantages over carbon nanotubes. Read More
Whether it’s touch-sensitive skin for robots, clothing made from smart fabrics, or devices with bendable displays, stretchable electronics will be playing a large role in a number of emerging technologies. While the field is still very new, stretchable electronic devices may have come a step closer to common use, thanks to research being conducted at North Carolina State University. Scientists there have recently developed a new method for creating elastic conductors, using carbon nanotubes. Read More
Robots, prosthetic limbs and touchscreen displays could all end up utilizing technology recently developed at California’s Stanford University. A team led by Zhenan Bao, an associate professor of chemical engineering, has created a very stretchy skin-like pressure-sensitive material that can detect everything from a finger-pinch to over twice the pressure that would be exerted by an elephant standing on one foot. The sensitivity of the material is attained through two layers of carbon nanotubes, that act like a series of tiny springs. Read More
Advertisement