Advertisement
more top stories »

Stretchable Electronics


— Science

Carbon nanotubes used to create conducting fibers for artificial muscles

By - July 24, 2015 2 Pictures

A new kind of conducting fiber developed at the University of Texas at Dallas is being used to develop artificial muscles and capacitors that store more energy when stretched. The fiber, which is composed of carbon nanotube sheets wrapped around a rubber core, may one day also find use in morphing aircraft, stretchy charger cords and exoskeleton limbs, along with connecting cables for a wealth of other devices.

Read More
— Science

"Nano-accordion" conductors may find use in flexible and stretchable electronics

By - June 17, 2015 3 Pictures

A new conductive, transparent, and stretchable nanomaterial that folds up like an accordion could one day be applied to the development of flexible electronics and wearable sensors, as well as stretchable displays. The researchers at North Carolina State University who created this "nano-accordion" structure caution that it is early days yet, but they hope to find ways to improve its conductivity and eventually scale it up for commercial or industrial use.

Read More
— Science

Stretchable optical circuits could find use in robot skin and more

By - February 19, 2014 2 Pictures
If flexible electronic devices are ever going to become practical for real-world use, the circuitry incorporated into them will have to be tough and resilient. We're already seeing progress in that direction, including electrical wires that can still carry a current while being stretched. However, what if the application calls for the use of fiber optics? Well, scientists from Belgium may have that covered, too. They've created optical circuits utilizing what they believe are the world's first stretchable optical interconnections. Read More
— Electronics

Silver nanowires form basis of new wearable, multifunctional sensor

By - January 16, 2014 1 Picture
In 2012, Dr. Yong Zhu and a team at North Carolina State University created highly conductive and elastic conductors made from silver nanowires. At the time, Dr. Zhu said the conductors could be used to create stretchable electronics with applications in wearable, multifunctional sensors. Two years later, the NC State researchers have developed just such a sensor. Read More
— Electronics

Experimental lithium-ion battery can be stretched, twisted and wirelessly charged

By - February 27, 2013 3 Pictures
Thanks to the advent of stretchable electronics, we’re currently witnessing the development of things like smart fabrics, bendable displays, and even pressure-sensitive skin for robots. In many potential applications, however, the usefulness of such electronics would be limited if they still had to be hooked up to a rigid battery. In response to that problem, a team of scientists have recently created – you guessed it – a stretchable lithium-ion battery. Read More
— Electronics

Stretchable electrical wires heal back together after being severed

By - January 23, 2013 1 Picture
Last month, we heard about how a team led by North Carolina State University’s Dr. Michael Dickey had created an electrical wire that could be stretched up to eight times its regular length ... and still carry a current. This was possible thanks to a conductive liquid metal alloy of gallium and indium, contained inside the wire’s elastic polymer outer housing. Now, Dickey's team has developed a new wire that not only can be stretched, but that will heal itself when severed. Read More
— Electronics

Silver nanowire conductors could mean better stretchable electronics

By - July 13, 2012 2 Pictures
Earlier this year, a team led by North Carolina State University’s Dr. Yong Zhu reported success in creating elastic conductors made from carbon nanotubes. Such conductors could be used in stretchable electronics, which could in turn find use in things like bendable displays, smart fabrics, or even touch-sensitive robot skin. Now, he has made some more elastic conductors, but this time using silver nanowires – according to Zhu, they offer some big advantages over carbon nanotubes. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement