Top 100: The most desirable cars of all time

Stars

An aerial view of the Chajnantor Plateau, home to the Atacama Large Millimeter/submillimet...

Even before the Atacama Large Millimeter/submillimeter Array (ALMA) was inaugurated this week, it was already rewriting history with its observations showing that a stellar baby boom took place much earlier than previously thought. But the pre-inauguration announcement isn’t a reflection that the ALMA team didn’t get to enjoy the official ceremony – like the first images released in 2011, the observations were taken while ALMA was still under construction.  Read More

Artist's conception of WISE J1049-5319, with the brightly shining Sun 6.5 light years away...

In a day when we have examined astronomical objects shining forth from a time shortly after the Big Bang, one would think astronomers have a pretty good handle on what is in the immediate vicinity of the Solar System. That's why the recent report of a binary star lying only 6.5 light-years away came as rather a surprise to the astronomical community. The pair, called WISE J1049-5319 A and B, are brown dwarf stars and only two star systems – the triple star Alpha Centauri, and Barnard's Star – lie closer to our Sun.  Read More

One of the BRITE nano-satellites, as it was being assembled in Toronto

At the Satish Dhawan Space Centre in Sriharikota, India this morning (Feb. 25), the smallest astronomical satellite ever built was launched into orbit aboard the Polar Satellite Launch Vehicle C20 rocket. In fact, it wasn’t just one satellite, but two – each of the twin BRIght Target Explorer (BRITE) spacecraft take the form of a cube that measures just 20 cm (7.8 inches) per side, and weighs in at under seven kilograms (15.4 lbs).  Read More

Habitable zone distances around various types of stars (Image: Chester Herman)

Researchers at Penn state have developed a new method for calculating the habitable zone around stars. The computer model based on new greenhouse gas databases provides a tool to better estimate which exoplanets with sufficient atmospheric pressure might be able to maintain liquid water on their surface. The new model indicates that some of the nearly 300 possible Earth-like planets previously identified might be too close to their stars to to be habitable.  Read More

An artist's conception of the HD142527 system, with gas streamers being pulled towards the...

Observations made with the Atacama Large Millimeter/Submillimeter Array (ALMA) in northern Chile, which is scheduled for completion this year, have solved a longstanding mystery in solar system formation. They showed how protoplanets forming around a young star can use their own gravitational pull to slingshot matter in the direction of their host star, fueling its growth.  Read More

Artist's conception of a protostar pulling interstellar gas onto a rotating protoplanetary...

The Sun is a bit over 4.5 billion years old, leading many to think of all stars as billions of years in age. Astronomers have now demonstrated that isn't always the case. Using high-resolution millimeter and submillimeter imaging telescope arrays, John Tobin of the National Radio Astronomy Observatory (NRAO) and his collaborators have now discovered an infant star whose age is measured in thousands, rather than billions, of years. While at present the protostar has only about a fifth of the Sun's mass, projections point to the eventual formation of a stellar system broadly similar to our Sun and its planets.  Read More

X-ray pulsars could help interstellar spaceships like this Bussard ramjet to navigate (Ima...

The European Space Agency (ESA) wants to know if it’s possible to use dead stars as a navigational aid for traveling in deep space. To answer that question, ESA has contracted Britain’s National Physical Laboratory (NPL) and the University of Leicester to investigate whether pulsars can serve as navigational beacons in the far-flung reaches of the outer Solar System or interstellar space.  Read More

SLAC's LCLS is the world's most powerful X-ray laser (Photo: University of Oxford/Sam Vink...

To say things are really heating up at the US Department of Energy's SLAC National Accelerator Laboratory isn't just a bad pun, it's one hell (sorry) of an understatement. An Oxford-led team used the Stanford-based facility that houses the world's most powerful X-ray laser to create and probe a 2-million-degree Celsius (or about 3.6 million degrees Fahrenheit) piece of matter. The experiment allowed the scientists the closest look yet at what conditions might be like in the heart of the Sun, other stars and planets.  Read More

A spectrum from the Infrared Space Observatory superimposed on an image of the Orion Nebul...

Researchers at the University of Hong Kong (HKU) claim to have solved the mystery of “Unidentified Infrared Emission features” that have been detected in stars, interstellar space, and galaxies. For over two decades, the most commonly accepted theory regarding this phenomenon was that these signatures come from polycyclic aromatic hydrocarbon (PAH) molecules - simple organic molecules made of carbon and hydrogen atoms. Now HKU researchers say the substances generating these signatures are actually complex organic compounds that are made naturally by stars and ejected into interstellar space.  Read More

Technicians working on the 'billion-pixel array,' which will be used aboard the Gaia space...

At approximately one billion pixels, it’s the largest digital camera ever built for a space mission. Over a five-year period, the “billion-pixel array” will be used aboard the European Space Agency’s Gaia spacecraft, to map upwards of a billion stars. While it will be focusing mainly on our own Milky Way galaxy, Gaia will also be mapping other celestial bodies, including galaxies and quasars near the edge of the observable universe.  Read More

Looking for something? Search our 29,854 articles
Editor's Choice
Product Comparisons