Purchasing new hardware? Read our latest product comparisons
ADVERTISEMENT

Stanford University

After decades of trial and error, artificial intelligence applications that aim to understand human language are slowly starting to lose some of their brittleness. Now, a simple mathematical model developed by two psychologists at Stanford University could lead to further improvements, helping transform computers that display the mere veneer of intelligence into machines that truly understand what we are saying. Read More
Stanford researchers have found that concentric carbon nanotubes, with the outer layer riddled by defects and impurities, could be a cheap alternative for some of the platinum catalysts that convert hydrogen and oxygen into water in fuel cells and metal-air batteries. Read More
Age-related macular degeneration is the leading cause of blindness in North America, while retinitis pigmentosa causes approximately 1.5 million people worldwide to lose their sight every year. Individuals afflicted with retinal degenerative diseases such as these might someday be able to see again, however, thanks to a device being developed at California’s Stanford University. Scientists there are working on a retinal prosthesis, that uses what could almost be described as miniature solar panels to turn light signals into nerve impulses. Read More
Although the pixel count for consumer cameras continues to rise, they will all pale in comparison to the 3,200-megapixel Large Synoptic Survey Telescope (LSST) camera. Although the enormous astronomical camera has yet to be built, last week the U.S. Department of Energy gave its approval for the project to proceed to the next phase of development. This means that a detailed engineering design can begin, along with a production schedule and budget. If everything goes according to plan, construction on what will be the world’s largest digital camera should begin in 2014. Read More
Higher-density batteries, more efficient thin-film solar cells, and better catalysts may all soon be possible, thanks to a new technique that allows nanowires to be “decorated” with nanoparticles. Using the novel technology, scientists from Stanford University have been able to festoon the outside surfaces of nanowires with intricate chains of metal oxide or noble metal nanoparticles, thereby drastically boosting the effective surface area of the nanowires. Other researchers have previously tried to achieve the same end result, but apparently never with such success. Read More
Scientists at Stanford University’s School of Medicine have created nanoparticles that are able to precisely highlight brain tumors. Because the nanoparticles can be imaged in three different ways, they can be used to delineate the boundaries of tumors before and during brain surgery to ease the complete removal of tumors. The scientists have already used the nanoparticles to remove brain tumors from mice with unprecedented accuracy and hope the technique could be used on humans in the future. Read More
Scientists have succeeded in endowing graphene with yet another useful property. Already, it is the thinnest, strongest and stiffest material ever measured, while also proving to be an excellent conductor of heat and electricity. These qualities have allowed it to find use in everything from transistors to supercapacitors to anti-corrosion coatings. Now, two materials engineers from Stanford University have used computer models to show how it could also be turned into a piezoelectric material – this means that it could generate electricity when mechanically stressed, or change shape when subjected to an electric current. Read More
A throwback to early 20th Century aviation may hold the key to eliminating the sonic boom - at least according to researchers at MIT and Stanford University. Strongly reminiscent of biplanes still in use today, the researcher's concept supersonic aircraft introduces a second wing which it is claimed cancels the shockwaves generated by objects near or beyond the sound barrier. Read More
With the wait still on for a miniaturization ray to allow some Fantastic Voyage-style medical procedures by doctors in submarines, tiny electronic implants capable of traveling in the bloodstream show much more promise. While the miniaturization of electronic and mechanical components now makes such devices feasible, the lack of a comparable reduction in battery size has held things back. Now engineers at Stanford University have demonstrated a tiny, self-propelled medical device that would be wirelessly powered from outside the body, enabling devices small enough to move through the bloodstream. Read More
For those unfamiliar with the term, a “whispering gallery” is a round room designed in such a way that sound is carried around its perimeter – this allows a person standing on one side to hear words whispered by a person on the other. Now, scientists from Stanford University have developed a new type of photovoltaic material, that essentially does for sunlight what whispering galleries do for sound. Not only does the material have a structure that circulates light entering it, but it could also result in cheaper, less fragile, and less angle-sensitive solar panels. Read More
ADVERTISEMENT
ADVERTISEMENT