Advertisement

Stanford University

Electronics

Tin-based stanene could conduct electricity with 100 percent efficiency

A team of theoretical physicists from the US Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University is predicting that stanene, a single layer of tin atoms laid out in a two-dimensional structure, could conduct electricity with one hundred percent efficiency at room temperature. If the findings are confirmed they could pave the way for building computer chips that are faster, consume less power, and won't heat up nearly as much.Read More

Electronics

Self-healing electrode coating could lead to longer-lasting batteries

In their continuing efforts to increase the energy density of lithium-ion batteries, scientists have began looking at alternative materials for those batteries' electrodes – materials such as silicon. The problem is, electrodes swell and shrink as they absorb and release lithium ions, causing them to break down over time. This is particularly true of silicon, which is brittle by nature. Now, however, scientists have developed a conductive elastic polymer coating for those electrodes, that heals its own cracks after each use. Read More

3D Printing

SCI-Arc students take 3D printing to the robots

Since it launched in 2011, the Robot House at the Southern California Institute of Architecture (SCI-Arc) has challenged students to create material forms of digital models by orchestrating complex robotic movements in space. But aided by the 3D printer they are breaking even newer ground. Students have begun concocting their own materials, which they can then fit with sensors to follow changes in the material as it is manipulated and, they hope, produce an appropriate response.Read More

Science

First laser-driven electron accelerator demonstrated

If Angus MacGyver was a particle physicist, he might face a challenge like this: Take a femtosecond laser and a fused quartz grating and make the world's most powerful particle accelerator. Despite the apparent incongruity of the resources and the goal, researchers at the US Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have fabricated a proof-of-principle electron accelerator using just such equipment. In the demonstration, electrons from a 60 MeV beam saw a force of acceleration about ten times greater than possible in a conventional accelerator. Read More

Computers

Stanford scientists build first carbon nanotube computer

In a technological tour de force, researchers at Stanford University have constructed a one-bit, one-instruction programmable computer on a chip using carbon nanotube-based electronics for all logic elements. Containing 178 carbon nanotube field-effect transistors, the computer is only able to carry out only one instruction, called SUBNEG. However, SUBNEG is Turing-complete, allowing the computer to run, albeit with an extraordinary level of inefficiency, any program, given enough memory, time, and programming ingenuity.Read More

Science

Metamaterials breakthrough could lead to the first wide-spectrum optical invisibility cloak

To make a Harry Potter-style invisibility cloak requires that the materials from which it is made have a negative refractive index over all optical wavelengths, from red to violet. However, the artificially-structured optical materials from which cloaks are made thus far have been restricted to a very narrow range of optical wavelengths, limiting their ability to cloak over a range of colors. That obstacle to progress ends now, as a group of Stanford optical engineers at Stanford has succeeded in designing a broadband metamaterial that exhibits a negative refractive index over nearly the entire rainbow.Read More

Robotics

Stanford's flying fish glider bests ordinary jumping robots

Researchers at Stanford University have developed a small "aircraft" that resembles a flying fish which can jump and glide over a greater distance than an equivalent jumping robot. Using a carbon fiber spring to take off, the jumpglider has a pivoting wing that stays out of the way during ascent, but which locks into place to glide farther on the way down.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning