Advertisement
more top stories »

Stanford University


— Electronics

Smaller, faster, greener "high-rise" 3D chips are ready for Big Data

Stanford engineers have pioneered a new design for a scalable 3D computer chip that tightly interconnects logic and memory, with the effect of minimizing data bottlenecks and saving on energy usage. With further work, the advance could be the key to a very substantial jump in performance, efficiency, and the ability to quickly process very large amounts of information  –  known as "Big Data"  –  over conventional chips. Read More
— Environment

Mirror coating to cool buildings by pumping interior heat into space

Keeping buildings cool isn't easy. In fact, conventional air conditioning methods are very energy intensive and account for up to 15 percent of the energy used in buildings in the United States alone. However, engineers at Stanford University have come up with a new ultrathin, multilayered, nanophotonic material that not only reflects heat away from buildings, but also directs heat from inside out into space, cooling both the building and the planet as well. Read More
— Architecture

Stanford researchers develop earthquake-resistant house prototype

Though a large earthquake can prove catastrophic to life and property, even relatively minor tremors may compromise the structural integrity of a home, resulting in large repair costs. A team of engineers based at California's Stanford University has developed a new method of building earthquake-resistant homes that could be implemented relatively easily and inexpensively. Read More
— Electronics

"Smart" lithium-ion battery would warn users if it is going to ignite

There have been numerous cases of lithium-ion batteries catching fire in everything from mobile phones and laptops to cars and airplanes. While the odds of this occurring are low, the fact that hundreds of millions of lithium-ion batteries are produced and sold every year means the risk is still very real. Researchers at Stanford University have now developed a "smart" lithium-ion battery that would provide users with a warning if it is overheating and likely to burst into flames. Read More
— Science

"Nanograss" boosts the efficiency of organic solar cells

Researchers at the University of Massachusetts Amherst, Stanford University and the Dresden University of Technology have developed a long sought-after nanostructure that can significantly increase the efficiency of organic solar cells. Their "nanograss," a dense array of vertical nanopillars, can capture photons at a very high efficiency and could also lead to cheaper and more advanced 3D transistors, photodetectors and charge storage devices. Read More
— Electronics

Ant-sized radios could help connect trillions of devices to the Internet of Things

A team of researchers from Stanford University and the University of California, Berkeley, has created prototype radio-on-a-chip communications devices that are powered by ambient radio waves. Comprising receiving and transmitting antennas and a central processor, the completely self-contained ant-sized devices are very cheap to manufacture, don't require batteries to run and could give the "Internet of Things" (IoT) a serious kick start. Read More
— Electronics

Buckyballs and diamondoids combined to create molecule-sized diode

Scientists working at the Stanford Institute for Materials and Energy Sciences (SIMES) claim to have created a molecule-sized electronic component just a few nanometers long that conducts electricity in only the one direction. In essence, a rectifier diode, but one so small that it may one day help replace much bulkier diodes and other semiconductors found on today's integrated circuits to produce incredibly compact, super-fast electronic devices. Read More
— Medical

Eye pressure-monitoring implant could save glaucoma patients from blindness

Currently, people with glaucoma must have their internal optic pressure (the pressure within their eye) regularly checked by a specialist. If that IOP gets too high, then steps need to be taken to lower it, before vision damage can occur. The problem is, the pressure can change quickly, potentially rising to dangerous levels between those checks. A new implant, however, could make it possible for patients to check their own IOP as often as they like, using their smartphone. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement