Highlights from Interbike 2014

Stanford University

Researchers have created prototype ant-sized radio-on-a-chip devices powered by ambient ra...

A team of researchers from Stanford University and the University of California, Berkeley, has created prototype radio-on-a-chip communications devices that are powered by ambient radio waves. Comprising receiving and transmitting antennas and a central processor, the completely self-contained ant-sized devices are very cheap to manufacture, don't require batteries to run and could give the "Internet of Things" (IoT) a serious kick start.  Read More

Molecule-sized 'buckydiamondoids' have been created that exhibit similar electrical proper...

Scientists working at the Stanford Institute for Materials and Energy Sciences (SIMES) claim to have created a molecule-sized electronic component just a few nanometers long that conducts electricity in only the one direction. In essence, a rectifier diode, but one so small that it may one day help replace much bulkier diodes and other semiconductors found on today's integrated circuits to produce incredibly compact, super-fast electronic devices.  Read More

The implant measures internal optic pressure, excessive amounts of which can lead to loss ...

Currently, people with glaucoma must have their internal optic pressure (the pressure within their eye) regularly checked by a specialist. If that IOP gets too high, then steps need to be taken to lower it, before vision damage can occur. The problem is, the pressure can change quickly, potentially rising to dangerous levels between those checks. A new implant, however, could make it possible for patients to check their own IOP as often as they like, using their smartphone.  Read More

The Stanford University water splitter could save hydrogen producers billions of dollars (...

A new emissions-free device created by scientists at Stanford University uses an ordinary 1.5-volt battery to split water into hydrogen and oxygen at room temperature, potentially providing a low-cost method to power fuel cells in zero-emissions vehicles and buildings.  Read More

NASA has selected five finalists to move on in its NIAC Program

NASA has chosen five studies to advance to phase 2 of its Innovative Advanced Concepts (NIAC) Program. The successful projects were chosen via a system of peer review, and represent the most promising technological concepts with the greatest potential to revolutionize the agency's approach to the building and operating of aerospace systems.  Read More

Nanospheres were specifically created to protect the lithium from reacting chemically with...

Stanford University researchers claim to have created the first stable pure lithium anode in a working battery by using carbon nanospheres as a protective sheath to guard against degradation. As a result, the researchers predict that commercial developments may eventually result in anything up to a quadrupling of battery life in the not-too-distant future.  Read More

The Stanford University system uses a glass layer patterned with micro-pyramids and cones ...

Photovoltaic cells are one of the more promising alternative energy sources. Mechanically they are very simple, with no moving parts, and are clean and emission-free. Unfortunately they are also inefficient. One of the reasons for this is that they overheat, a problem that a Stanford University team under electrical engineering professor Shanhui Fan is addressing with the development of a thin glass layer that makes solar cells self-cooling.  Read More

Dr. Brian Feldman is one of the inventors of the testing system

For people who don't already know, here's the difference between type 1 and type 2 diabetes: the body produces little or no insulin in the case of type 1, and isn't able to utilize the insulin that it does produce in type 2. It's a significant difference, so it's important that patients are diagnosed correctly. Thanks to a new microchip developed by a team at Stanford University led by Dr. Brian Feldman, doing so could soon be quicker, cheaper and easier than ever before.  Read More

A climber uses the Z-Man paddles to climb up a glass surface

Geckos are likely better climbers than any other animal, so it's no surprise that a number of researchers have tried to copy that ability via man-made technology. One group, from Stanford University, was particularly successful with a small climbing robot known as the Stickybot. Four years ago, we heard about how they were also looking into applying the Stickybot tech to a system that would allow humans to climb up vertical surfaces. Now, DARPA has announced the first successful demonstration of that system, known as Z-Man.  Read More

Tiny, wirelessly-charged medical devices implanted deep inside the human body could treat ...

Researchers at Stanford University have developed a new way to safely transfer energy to tiny medical devices implanted deep inside the human body. The advance could lead to the development of tiny "electroceutical" devices that can be implanted near nerve bundles, heart or brain tissue and stimulate them directly when needed, treating diseases using electronics rather than drugs.  Read More

Looking for something? Search our 28,500 articles