Advertisement

Stanford University

Medical

Stanford's whiz-bang idea to bring gold-standard urine testing to the home

A urine test can be an invaluable way of detecting a number of medical conditions, a list which can include infections, diseases, and even certain types of cancer. Looking to improve access to this diagnostics tool, Stanford University engineers have designed a smartphone-based urine test for the home that relies on the same approach used in the doctor's office, claiming it could offer equally accurate results.Read More

Robotics

"Robo-mermaid" combs ocean depths for shipwreck treasure

Even with bottled oxygen and elite training, there are underwater locations that lie well beyond our physical capabilities. But via haptic feedback technology and artificial intelligence, Stanford University's humanoid diving robot is now putting the ocean's depths within human reach. In its maiden expedition, the OceanOne droid has just scoured an untouched shipwreck off the coast of France and returned with a delicate, 17th century vase in its grip. Researchers are now eyeing future voyages to coral reefs, oil rigs and underwater disaster zones.Read More

Aircraft

Can an up-close study of bird flight clear shapeshifting aircraft wings for takeoff?

The ability of birds to fly more efficiently by changing the shape of their wings has inspired a number of approaches to developing low-energy aircraft. If this technique can be replicated, where individual feathers are adjusted to guide the animals through the air, it could make for vehicles that are lighter, faster and more maneuverable. With a view to making such shape-shifting wings a reality, scientists are about to get up close and personal with our avian friends, launching into the most detailed analysis of bird flight ever conducted in the name of aerospace engineering.Read More

Electronics

"Covert contacts" enable more efficient solar cell design

You've probably noticed that solar panels sitting on people's roofs appear to be broken up into grids. These grid lines are actually metal contacts and, although they're necessary for conducting the electrical current generated by the underlying semiconductor, they reduce the amount of sunlight reaching the semiconductor layer. Now researchers at Stanford University have developed a way to make these reflective metal contacts almost invisible to incoming light, thereby increasing solar panel efficiency.Read More

Automotive

Toyota Research Institute to further AI and robotics research

Committing US$1 billion over the next five years, Toyota Motor Corporation has announced the establishment of the Toyota Research Institute (TRI), a research and development center initially focusing on artificial intelligence (AI) and robotics. The company is tasked with developing technologies to increase driving safety and improve mobility and quality of life, particularly for the elderly..Read More

Materials

Material that could revolutionize memory storage is magnetic, but not as we know it

Using a type of magnetic insulator material that normally doesn’t conduct electricity, scientists working at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory have shown that electric currents can still be made to flow along the borders of the grains within the material. This latest research not only validates a long-held belief that magnetic insulators could be used to conduct electricity, but offers a more tantalizing possibility of creating highly-efficient magnetic memory devices.
Read More

Robotics

Electronic skin could give prostheses and robots a sense of touch

Our sense of touch is made possible thanks to thousands of "mechanoreceptors," which are distributed throughout our skin. The more pressure that's applied to one of these sensors, the more electrical pulses it sends to the brain, thus increasing the tactile sensation that we experience. Led by Prof. Zhenan Bao, scientists at Stanford University have now created synthetic skin that contains electronic mechanoreceptors, which could give prosthetic limbs or robots a sense of touch.Read More

Automotive

Stanford's autonomous DeLorean can't time travel, can do donuts

It doesn't have a flux capacitor and may not be able to travel through time like its inspiration in the 1985 feature Back to the Future, but Stanford University's converted DeLorean Multiple Actuator Research Test bed for Yaw (MARTY) can cut some wicked donuts without the aid of a driver. The creation of professor of mechanical engineering Chris Gerdes and his students, the autonomous, electric, drifting automotive research vehicle is part of a student-driven research project into the physical limits of autonomous driving that aims to improve the safe operation of self-driving cars under all conditions.Read More

Environment

Transparent coating keeps solar cells cool and efficient throughout the day

Stanford engineers have developed a transparent silicon overlay that can increase the efficiency of solar cells by keeping them cool. The cover collects and then radiates heat directly into space, without interfering with incoming photons. If mass-produced, the development could be used to cool down any device in the open air for instance, to complement air conditioning in cars.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning