Advertisement
more top stories »

Stanford University


— Electronics

"Covert contacts" enable more efficient solar cell design

You've probably noticed that solar panels sitting on people's roofs appear to be broken up into grids. These grid lines are actually metal contacts and, although they're necessary for conducting the electrical current generated by the underlying semiconductor, they reduce the amount of sunlight reaching the semiconductor layer. Now researchers at Stanford University have developed a way to make these reflective metal contacts almost invisible to incoming light, thereby increasing solar panel efficiency.

Read More
— Automotive

Toyota Research Institute to further AI and robotics research

Committing US$1 billion over the next five years, Toyota Motor Corporation has announced the establishment of the Toyota Research Institute (TRI), a research and development center initially focusing on artificial intelligence (AI) and robotics. The company is tasked with developing technologies to increase driving safety and improve mobility and quality of life, particularly for the elderly..

Read More
— Materials

Material that could revolutionize memory storage is magnetic, but not as we know it

Using a type of magnetic insulator material that normally doesn’t conduct electricity, scientists working at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory have shown that electric currents can still be made to flow along the borders of the grains within the material. This latest research not only validates a long-held belief that magnetic insulators could be used to conduct electricity, but offers a more tantalizing possibility of creating highly-efficient magnetic memory devices.

Read More
— Robotics

Electronic skin could give prostheses and robots a sense of touch

Our sense of touch is made possible thanks to thousands of "mechanoreceptors," which are distributed throughout our skin. The more pressure that's applied to one of these sensors, the more electrical pulses it sends to the brain, thus increasing the tactile sensation that we experience. Led by Prof. Zhenan Bao, scientists at Stanford University have now created synthetic skin that contains electronic mechanoreceptors, which could give prosthetic limbs or robots a sense of touch.

Read More
— Automotive

Stanford's autonomous DeLorean can't time travel, can do donuts

It doesn't have a flux capacitor and may not be able to travel through time like its inspiration in the 1985 feature Back to the Future, but Stanford University's converted DeLorean Multiple Actuator Research Test bed for Yaw (MARTY) can cut some wicked donuts without the aid of a driver. The creation of professor of mechanical engineering Chris Gerdes and his students, the autonomous, electric, drifting automotive research vehicle is part of a student-driven research project into the physical limits of autonomous driving that aims to improve the safe operation of self-driving cars under all conditions.

Read More
— Environment

Transparent coating keeps solar cells cool and efficient throughout the day

Stanford engineers have developed a transparent silicon overlay that can increase the efficiency of solar cells by keeping them cool. The cover collects and then radiates heat directly into space, without interfering with incoming photons. If mass-produced, the development could be used to cool down any device in the open air for instance, to complement air conditioning in cars.

Read More
— Medical

Protein patch restores heart tissue and function after a heart attack

Though sufferers of heart attacks may survive the initial event, they cause permanent damage to the organ in the form of scar tissue, which affects its ability to pump blood. Scientists around the world are working on this problem, with hydrogels, human stem cells and even bioengineered tissue that sticks together like Velcro all offering possible solutions. But the latest promising advance comes from a team of researchers that has developed a simple protein patch that restores animal hearts almost to normal function.

Read More
— Environment

Researchers say Earth is entering a sixth mass extinction event

While there is still much conjecture about the causes of some mass extinctions, it is generally believed that they can occur when a biosphere under long-term stress is subjected to a short-term shock. In 1982, Jack Sepkoski and David M. Raup published a paper identifying five mass extinction events throughout Earth's history. Now a team of researchers claims that we are entering a sixth mass extinction event, which threatens our very existence.

Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement