Purchasing new hardware? Read our latest product comparisons
ADVERTISEMENT

The Standard Model

Scientists have struggled for decades to identify the constituent particles of dark matter, but they’ve had little to show for all their efforts. A new study at Case Western Reserve University is now advancing the radical new hypothesis that dark matter may in fact be made not of exotic subatomic particles, but rather of macroscopic objects which would mass anywhere from a tennis ball to a dwarf planet, be as dense as a neutron star, and still be adequately described by the Standard Model of particle physics. Read More
Fresh evidence has come to light supporting the theory that the particle detected at CERN's Large Hadron Collider (LHC) in 2012 is indeed the elusive Higgs boson. The work is the result of an international collaboration led by researchers from MIT, and confirms that the potential Higgs boson does exhibit the decay characteristics that would be expected under the Standard Model. Read More
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Dresden, Germany have analyzed data from the HADES particle detector and concluded that the so-called "dark photons" are not the constituents of dark matter. Dark photons, or U bosons, are hypothetical particles that had thus far been the main candidate for that role, and this new result could make the search for the dark matter particle even more challenging than before. Read More
The close of 2013 gives us an excellent opportunity, though satiated with holiday feasts, to look back on a year that has been filled with scientific accomplishment. So it's time to get comfortable on your Binary Chair, sip your hot cocoa from a phase-change mug while your Foodini prints out a batch of cookies and reflect on science stories of note from the past year. Read More
The study of archaeology has long been carried out using tools from the physics lab. Among these are carbon-14 dating, thermoluminescence dating, x-ray photography, x-ray fluorescence elemental analysis, CAT and MRI scanning, ground-penetrating sonar and radar, and many others. What is less well known is that archaeology has also made substantial contributions to physics. This is the story of old lead; why it is important to physics, and what ethical problems it presents to both sciences. Read More
Following a last-minute delay, physicists Francois Englert and Peter Higgs were today jointly awarded the 2013 Nobel Prize in Physics for their independent formulation of the Higgs mechanism, which supplies fundamental particles with mass. Their theory was recently validated by the discovery of a Higgs boson at CERN's Large Hadron Collider. Read More

Researchers at the Jefferson Accelerator Laboratory have measured the weak charge of the proton for the first time. Early results from the Q-Weak experiment find the weak charge of the proton and the neutron to be consistent with predictions of the Standard Model. Read More

Particle physicists have been eagerly awaiting the first trials of the new Main Injector neutrino beam at the Fermi National Accelerator Laboratory in the US. This new facility is the result of reconfiguration of the Fermilab particle accelerators in the wake of the shutdown of the Tevatron in 2011. The new beam source is now online, and is well on route to becoming the world's most intense focused neutrino source. Read More
An international team of scientists using one of the pair of 10-meter telescopes at the W.M. Keck Observatory on the summit of Mauna Kea on the island of Hawaii has now shown that the early moments of our Universe closely followed the theoretical model for the genesis of the elements. Improved observational and modeling methods show that the elemental composition of the post-Big Bang universe agrees with the predictions of that model, eliminating what was thought to be a substantial discrepancy between theory and observation. Read More
It is dangerous to bet against Einstein. Cosmological research shows that the rate at which the Universe expands is increasing, rather than decreasing as was previously thought. The concept of "dark energy" with a negative pressure was introduced to describe this acceleration. Now measurements of the proton to electron mass ratio (PEMR) over the past seven billion years strongly suggest that the models of dark energy are far more contrived in explaining accelerating expansion than is Einstein's self-proclaimed "biggest blunder" – the cosmological constant. Read More
ADVERTISEMENT
ADVERTISEMENT