Shopping? Check out our latest product comparisons

Spintronics

Crystal structure of sodium bismuthide (Na3Bi), one of the newly discovered 3D topological...

Exciting times are ahead in the high-tech industries with the discovery by three independent groups that a new class of materials mimic the special electronic properties of graphene in 3D. Research into these superfast massless charge carriers opens up a wide range of potential applications in electronics, including smaller hard drives with more storage capacity, faster transistors and more efficient optical sensors.  Read More

Physicists at the University of Cambridge have used spintronics to move data between layer...

A major obstruction to the development of practical 3D microchips is moving data and logic signals from one layer of circuitry to another. This can be done with conventional circuitry, but is quite cumbersome and generates a good deal of heat inside the 3D circuit. Physicists at the University of Cambridge have now developed a spintronic shift register that allows information to be passed between different layers of a 3D microchip.  Read More

A new “spintronic” OLED glows orangish exposed to a magnetic field from the two poles of a...

We’ve seen a number of next-generation display technologies emerge in recent years, such as Sony’s “Crystal LED,” Uni-Pixel’s time-multiplexed optical shutter (TMOS) technology, and quantum dot LED (QLED) display technology from LG and QD Vision, and now there’s another one to add to the mix. While displays based on the new “spintronic” OLED technology invented by physicists at the University of Utah are still some years off, the researchers say they should be brighter, cheaper and more environmentally friendly than the LEDs found in the current crop of TVs, computer displays, traffic lights and other electronic devices.  Read More

A simulation of a magnetic nanocontact shows how it causes spin waves to spread like rings...

The microwave technology used in applications such as mobile phones and wireless networks may be on its way to being replaced - with parts that are smaller, less expensive, and that consume less resources. Instead of microwaves, devices of the future may use spin waves, which are nanoscale magnetic waves. For almost ten years, it has been theorized that spin waves could be propagated using magnetic nanocontacts. Recently, scientists from the University of Gothenburg and the Royal Institute of Technology, Sweden, became the first people to demonstrate that the theory meshes with observable phenomena.  Read More

Researchers have found that electric fields can manipulate a magnetically polarized curren...

Using flexible organic semiconductors, researchers at Queen Mary, University of London and the University of Fribourg have made a discovery that could lead to the simultaneous storing and processing of data on the same computer chip, bringing a dramatic improvement in power efficiency and reduced weight of electronic devices.  Read More

A diagram of nanowires used in a Racetrack memory chip

Tired of waiting for your computer to boot up? Within five to seven years, you may no longer have to. That’s the estimated amount of time it will take to bring Racetrack Memory to market. Racetrack is a proposed new shock-proof system that is said to be 100,000 times faster than current hard drives, while also being 300 times more energy-efficient. Although it incorporates cutting-edge nanotechnology, it’s based on the same principles as the humble VHS videotape.  Read More

A scanning electron microscope image and a rendering of Caltech's silicon nanomesh (Image:...

Researchers at two different institutions have recently announced the development of technologies for converting waste heat from electronics into something useful. At the California Institute of Technology (Caltech), they’ve created a silicon nanomesh film that could collect heat from electric appliances such as computers or refrigerators and convert it to electricity. Meanwhile, their colleagues at Ohio State University (OSU) have been working with a semiconducting material that has the capacity to turn waste heat from computers into additional processing power.  Read More

The spintronics breakthrough by Hui Zhao could lead the way to the development of superior...

Spin electronics, or “spintronics” promises to revolutionize computing. We’ve covered numerous breakthroughs in the field including controlling the spin of electrons, manipulating single electrons independently, and the first plastic spintronic computer memory device. However, one major hurdle for spintronics researchers has been the difficulty in detecting the flow of spinning electrons in real time. The discovery of a new way to recognize currents of spinning electrons within a semiconductor changes that and could lead the way to the development of superior computers and electronics.  Read More

The hybrid magnetic tunnel junction fabricated to achieve electrical detection of spin pol...

Spintronics – or spin electronics – is an emerging technology that exploits the intrinsic spin of the electron rather than its charge, as is the case with current electronic devices. The technology promises microelectronic devices that can store more data in less space, process data faster, and consume less power. Researchers at Ohio State University (OSU) have now demonstrated the first plastic memory device that utilizes the spin of electrons to read and write data.  Read More

Jason Petta, an assistant professor of physics, has found a way to alter the property of a...

The superfast computers of tomorrow will likely be able to manipulate individual electrons, harnessing their charge and magnetism to achieve massive data storage and outstanding processing speeds at very low power requirements. But how exactly do you go about manipulating single electrons independently, without affecting the ones nearby? Princeton University's Jason Petta has recently demonstrated a way to do just that in a breakthrough for the field of spintronics that brings faster and low-power number-crunching closer to reality.  Read More

Looking for something? Search our 27,772 articles