Purchasing new hardware? Read our latest product comparisons
ADVERTISEMENT

Soft Robotics

The recent animated feature Big Hero 6 is more than a collection of comic book fantasies – there's some hard science behind the soft robots. Baymax, the inflatable robot designed to care for humans who stars in the film may seem as unlikely as a chocolate teapot, but Chris Atkeson, professor of robotics at Carnegie Mellon is working on a real life version (minus the karate and flying armor). Gizmag caught up with Atkeson to discuss the project. Read More
How would you like to be able to sense magnetic fields? It could come in handy, given that some animals navigate and maintain their spatial orientation by doing so. Well, we've now come one step closer to humans having that ability, too. Scientists from Germany's Leibniz Institute for Solid State and Materials Research, along with colleagues from the University of Tokyo and Osaka University, have developed a thin, flexible magnetoresistive sensory foil that can be applied to a person's own natural skin. Read More
Harvard University labs, working in collaboration with Trinity College Dublin, are offering a comprehensive online toolkit to help in the design, creation, and control of soft robots made from flexible materials. Aimed at skilled and novice researchers alike, the Soft Robotics Toolkit provides a veritable cornucopia of downloadable, open-source plans, step-by-step tutorial videos, and real world studies for users to apply to their own soft robot project. Read More
Once upon a time, robots were imagined as human-like machines with a distinct body complete with head, arms, hands, feet, and legs. More recently, designers have explored the benefits of emulating other creatures and their capabilities, with robots that can fly like birds, run like cheetahs, swim like a squids or, in this case, slither like snakes. Researchers at MIT's Computer Science and Artificial Intelligence Lab (CSAIL) have come up with a single 3D printed, soft-shelled tentacle that is designed to navigate through all manner of pipes, channels, and burrows. Read More
If you've ever watched an octopus, you may have noticed how they can deliver powerful grasping force when necessary, yet can also squeeze through tiny openings by essentially making themselves "liquid." Now imagine if there were robots that could do the same thing. They could conceivably squirm through debris to reach buried survivors at disaster sites, or even travel through patients' bodies to perform medical procedures. An international team of scientists is working on making such technology a reality, using a combination of polyurethane foam and wax. Read More
Anyone who has ever tried to grab a minnow out of the water knows that it's almost impossible. Not only can they swim forward very quickly, but they can also make near-instantaneous right-angle turns, unpredictably shooting off to one side or the other in mere milliseconds. Now, scientists at MIT have replicated that capability in a soft-bodied robotic fish. Read More
Soft robotics is a quickly emerging field that takes a lot of inspiration from marine creatures like squids and starfish. A light-controlled hydrogel was recently developed that could be used for control of these new robotic devices, but now researchers at North Carolina State University are taking the development of soft robotic devices to a new level with electrically-charged hydrogels. Read More
For many people, the word “robot” is likely to conjure up images of metal, mechanical men not unlike Cygan. But instead of creating robots in our own image, the relatively new field of “soft robotics” takes inspiration from creatures such as octopuses, squids, starfish and caterpillars for soft, flexible robots that could squeeze through small spaces. Such robots could benefit from a new hydrogel developed at the University of California, Berkeley that flexes in response to light. Read More
Most robots are built out of rigid materials, but a DARPA initiative to build soft-bodied robots that can squeeze into hard-to-reach places has led to the development of new types of the mechanical marvels. Harvard's Whitesides Research Group is working on a soft-bodied solution and has produced a squishy three-legged bot that can jump 30 times its height using the power of internal explosions. Read More
If you’re worried about the coming robot apocalypse, then worry some more because soft, squishy robots just got camouflage. Scientists at Harvard University working under a Defense Advanced Research Projects Agency (DARPA) contract have developed a way of turning soft robots into “chameleons” capable of blending in with their backgrounds and even hiding from infrared sensors. That’s pretty impressive (or scary) for robots that can be made for less than US$100 apiece. Read More
ADVERTISEMENT
ADVERTISEMENT