Advertisement
more top stories »

Regenerative Medicine


— Science

New stem cell production technique comes as a shock

By - February 3, 2014 2 Pictures
An international research effort has found that mature animal cells can be shocked into an embryonic state simply by soaking them in acid or putting them under physical stress. The fortuitous breakthrough could prove to be massive for many fields of medical research if the method can be replicated using human cells, something researchers are confident will be possible. Read More
— Science

Researcher sending stem cells into space to observe rate of growth

By - December 19, 2013 1 Picture
A drawback for the use of stem cells in medical treatment is their limited supply due to slow rate of growth in conventional laboratories. Dr Abba Zubair of the Cell Therapy Laboratory at Mayo Clinic in Florida believes this problem could be overcome and stem cell generation sped up by conducting the process in space. He will now have the opportunity to put his hypothesis to the test, courtesy of a US$30,000 grant that will see Zubair send human stem cells to the International Space Station (ISS) to observe whether they do in fact grow at a greater rate than on terra firma. Read More
— Medical

Hair, bone and soft tissue regrown in mice by enhancing cell metabolism

By - November 11, 2013 1 Picture
Anyone who has left youth behind them knows that bumps and scrapes don't heal as fast as they used to. But that could change with researchers at the Stem Cell Program at Boston Children's Hospital finding a way to regrow hair, cartilage, bone, skin and other soft tissues in a mouse by reactivating a dormant gene called Lin28a. The discovery could lead to new treatments that provide adults with the regenerative powers they possessed when very young. Read More
— Science

Functional three-dimensional human liver tissue created with 3D bio-printer

By - April 24, 2013 1 Picture
Back in 2009, we heard about a 3D bio-printer that had been developed through a collaboration between Australian engineering firm Invetech, and Organovo, a San Diego-based regenerative medicine company. The device incorporates two print heads – one for placing human cells, and the other for placing a hydrogel, scaffold, or support matrix. At the time, the hope was that the printer could someday be used to create organs for transplant purposes. This week, Organovo announced that it has succeeded in using the device to create three-dimensional functioning human livers – albeit tiny ones. Read More
— Health and Wellbeing

Vilified free radicals boost tissue healing and regeneration in tadpoles (and perhaps humans)

By - January 16, 2013 2 Pictures
Researchers at the University of Manchester have found that Reactive Oxygen Species (ROS) – oxygen-containing free radicals that are commonly believed to be harmful to cells – actually play a vital role in the regeneration of the tails of tadpoles. The finding could have profound implications for the healing and regeneration of human tissue. Read More
— 3D Printing

Hybrid 3D printer produces implantable cartilage

By - November 23, 2012 2 Pictures
Generally speaking, injured cartilage doesn’t heal well ... if at all. In recent years, however, scientists have successfully regrown cartilage at injury sites, using things like hydrogel, microspheres and collagen-based nano-scaffolding. Now, a team of scientists led by Prof. James Yu of North Carolina's Wake Forest Institute for Regenerative Medicine have developed something else – a 3D printer that creates implantable cartilage. Read More
— Science

Nose cell transplants allow paralyzed dogs to walk again

By - November 20, 2012 1 Picture
Scientists from the University of Cambridge’s Veterinary School, working with colleagues from the UK Medical Research Council’s Regenerative Medicine Centre, have got disabled dogs walking again. More specifically, they’ve used the dogs’ own cells to repair their spinal cord injuries, and at least partially restored the functionality of their back legs. The researchers believe that the process shows promise for use on physically challenged humans. Read More
— Medical

Biocompatible sponge can be injected to deliver stem cells and drugs into the body

By - November 13, 2012 2 Pictures
Biocompatible scaffolds, like those developed to stimulate the repair of heart tissue and bone and cartilage in the body, would normally need to be implanted surgically. Now bioengineers at Harvard University have developed a compressible bioscaffold that can be delivered via a syringe before popping back to its original shape inside the body. The material is also able to be loaded up with drugs or living cells that are gradually released as the material breaks down. Read More
— 3D Printing

New technique paves the way for instant 3D-printed biological tissues

By - September 17, 2012 1 Picture
3D printing technologies have come a long way since their earliest incarnations as rapid product prototype makers. It's now shaping up as the next disruptive technology and in medical science, 3D printing has huge potential. The latest advance comes from University of California, San Diego Nanoengineering Professor Shaochen Chen, whose group has demonstrated the ability to print three-dimensional blood vessels in seconds. If the technique proves scalable, it could revolutionize regenerative medicine. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement