Advertisement

Regenerative Medicine

— Medical

Gel turns to bone-growing scaffold when injected into the body

In the field of regenerative medicine, one of the current areas of interest involves the use of scaffolding-like materials that a patient's own cells can be "seeded" onto. As the cells grow and populate the material, they gradually replace it, until all that remains is a solid piece of tissue or bone. Now, scientists at Houston's Rice University have taken that concept a step further, using a polymer that is liquid at room temperature, but that solidifies into a scaffold when injected into patients' bodies. Read More
— Medical

Rats receive lab-grown esophagi

Ordinarily, when patients require a total or partial replacement of their esophagus, tissue from their own stomach or intestine is used. This doesn't always result in a fully-functioning organ, plus it also involves the surgical removal of the needed material. Now, however, scientists have come a step closer to being able to grow a new esophagus from the patient's own stem cells, and in fact have already done so – with rats. Read More
— Medical

World-first regeneration of a living organ

It may not be to quite the same level achieved by Victor Frankenstein, but work by a team from the University of Edinburgh is likely to have significant real-world implications in the field of regenerative medicine. For the first time, the team has successfully regenerated a living organ in mice, not by using a jolt of electricity, but by manipulating DNA. Read More
— Science

Researcher sending stem cells into space to observe rate of growth

A drawback for the use of stem cells in medical treatment is their limited supply due to slow rate of growth in conventional laboratories. Dr Abba Zubair of the Cell Therapy Laboratory at Mayo Clinic in Florida believes this problem could be overcome and stem cell generation sped up by conducting the process in space. He will now have the opportunity to put his hypothesis to the test, courtesy of a US$30,000 grant that will see Zubair send human stem cells to the International Space Station (ISS) to observe whether they do in fact grow at a greater rate than on terra firma. Read More
— Medical

Hair, bone and soft tissue regrown in mice by enhancing cell metabolism

Anyone who has left youth behind them knows that bumps and scrapes don't heal as fast as they used to. But that could change with researchers at the Stem Cell Program at Boston Children's Hospital finding a way to regrow hair, cartilage, bone, skin and other soft tissues in a mouse by reactivating a dormant gene called Lin28a. The discovery could lead to new treatments that provide adults with the regenerative powers they possessed when very young. Read More
— Science

Functional three-dimensional human liver tissue created with 3D bio-printer

Back in 2009, we heard about a 3D bio-printer that had been developed through a collaboration between Australian engineering firm Invetech, and Organovo, a San Diego-based regenerative medicine company. The device incorporates two print heads – one for placing human cells, and the other for placing a hydrogel, scaffold, or support matrix. At the time, the hope was that the printer could someday be used to create organs for transplant purposes. This week, Organovo announced that it has succeeded in using the device to create three-dimensional functioning human livers – albeit tiny ones. Read More
— Health & Wellbeing

Vilified free radicals boost tissue healing and regeneration in tadpoles (and perhaps humans)

Researchers at the University of Manchester have found that Reactive Oxygen Species (ROS) – oxygen-containing free radicals that are commonly believed to be harmful to cells – actually play a vital role in the regeneration of the tails of tadpoles. The finding could have profound implications for the healing and regeneration of human tissue. Read More
— 3D Printing

Hybrid 3D printer produces implantable cartilage

Generally speaking, injured cartilage doesn’t heal well ... if at all. In recent years, however, scientists have successfully regrown cartilage at injury sites, using things like hydrogel, microspheres and collagen-based nano-scaffolding. Now, a team of scientists led by Prof. James Yu of North Carolina's Wake Forest Institute for Regenerative Medicine have developed something else – a 3D printer that creates implantable cartilage. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement