Advertisement
more top stories »

Regenerative Medicine


— Medical

3D-printed guide aids in complex nerve regeneration

Complex nerve injuries are a challenging problem for the medical fraternity, as their reattachment and regrowth is a fraught and delicate process that is very rarely successful. Overcoming these difficulties, however, would mean that a cure for debilitating conditions like paraplegia, quadriplegia and other forms of paralysis may one day be found. In this vein, US researchers have created the first-ever 3D printed guide specifically designed to assist in the regrowth of the sensory and motor functions of complex nerves.

Read More
— Medical

Man-made ligament could replace ruptured ACLs

If you follow sports at all, then you've probably heard about athletes rupturing their ACL, or anterior cruciate ligament. It connects the femur to the tibia, and once it breaks, it's incapable of healing. Treatment most often involves reconstructing the ACL using grafts from the patellar tendon, which connects the patella (aka the kneecap) to the tibia – although this can present problems of its own. Now, scientists at Northwestern University in Illinois are creating a man-made replacement ACL, which could make treatment much more effective. Read More
— Medical

Magnetically-directed nanoparticles could help heal broken bones

When a bone is severely broken in the human body, or a bone-fused prosthesis is implanted, a bone graft is also often required to ensure a solid mechanical repair. However, a graft that removes bone from another area of the body can be a painful and invasive procedure, and the mechanical stimulation required for continued bone regeneration in post-operative therapy becomes problematic if a patient is severely immobilized. To address these problems, researchers have discovered that coating magnetic nanoparticles with proteins and then directing them magnetically to the site of the injury can help stimulate stem cells to regenerate bone. Read More
— Health and Wellbeing

New diabetes treatment would turn liver cells into insulin-producers

When pancreatic islet allo-transplantation therapy was first introduced, it provided hope for countless diabetics tired of daily insulin injections. While the technology has delivered on much of its promise, Tel Aviv-based regenerative medicine firm Orgenesis is currently developing a treatment of its own, that it claims addresses much of the shortcomings of islet therapy. In a nutshell, its approach involves converting the patient’s own liver cells into cells that produce insulin. Read More
— Science

New understanding of lizard tails could allow humans to regrow body parts

If you ever had a pet lizard as a child, it was quite likely a green anole. As is the case with other lizards, they have the ability to break off their own tail when attacked by a predator, and then regrow it. Scientists from Arizona State University recently announced that they have cracked the code regarding that tail regrowth process, and are now hoping that it could be applied to the field of regenerative medicine. Read More
— Medical

Gel turns to bone-growing scaffold when injected into the body

In the field of regenerative medicine, one of the current areas of interest involves the use of scaffolding-like materials that a patient's own cells can be "seeded" onto. As the cells grow and populate the material, they gradually replace it, until all that remains is a solid piece of tissue or bone. Now, scientists at Houston's Rice University have taken that concept a step further, using a polymer that is liquid at room temperature, but that solidifies into a scaffold when injected into patients' bodies. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement