Advertisement
more top stories »

Quantum Computing


— Science

Quantum computing breakthrough uses diamond nanowires

Current computers operate using binary coding; thousands to trillions of small electrical circuits representing a binary digit (bit) of information that represent a "1" when the circuit is switched on and a "0" when switched off by means of an electronic switch. The future of computing is to move this to a quantum scale, where the weird properties of subatomic particles can be used to create much faster computers. A new device developed by Harvard scientists which uses nanostructured diamond wire to provide a bright, stable source of single photons at room temperature represents a breakthrough in making this quantum technology a reality. Read More
— Science

Quantum computing researchers achieve control over individual electrons

The superfast computers of tomorrow will likely be able to manipulate individual electrons, harnessing their charge and magnetism to achieve massive data storage and outstanding processing speeds at very low power requirements. But how exactly do you go about manipulating single electrons independently, without affecting the ones nearby? Princeton University's Jason Petta has recently demonstrated a way to do just that in a breakthrough for the field of spintronics that brings faster and low-power number-crunching closer to reality. Read More
— Science

Single-atom transistor promises new quantum computing breakthroughs

As far as transistor size is concerned, it doesn't get any smaller than this. An international group of researchers from the Helsinki University of Technology, the University of New South Wales and the University of Melbourne have successfully built a fully working transistor that is just one atom in size, smashing previous records and, more importantly, creating a very unique venue to study phenomena to be exploited in the rapidly developing field of quantum computing. Read More
— Science

Diamonds boost processing speeds in quantum computers

Scientists at UC Santa Barbara have made important advances in the field of spintronics by demonstrating the ability to electrically manipulate, at room temperatures, the quantum states of electrons trapped in the atomic structural defects of diamond crystals. Despite previous indications to the contrary, such quantum states can be manipulated very quickly, even at gigahertz frequencies, paving the way to significantly faster quantum computing. Read More
— Science

Speedy communication takes a quantum leap towards reality

Quantum computing is expected to revolutionize electronics over the course of the next few decades, but a number of outstanding issues still remain. One such problem is that "qubits," the basic building blocks of quantum information, are very fragile and can be easily destroyed when sent on a fiber optics cable, due to the surrounding noise. Working on this issue, a team from Stockholm's KHT University, led by Magnus Rådmark, has developed a new method for combining six photons to obtain a robust qubit that is resistant to noise and is, therefore, able to travel long distances without interference. Read More
— Science

MIT team develops hi-fi quantum memory

Scientists are rapidly achieving important breakthroughs in quantum computing, from obtaining precise manipulation of four photons at the same time to the very first quantum processors. But just like in traditional electronics, a quantum computer can't be realized with information processing alone — we need a reliable way to store and retrieve quantum information too. A new breakthrough by MIT researchers represents a step forward in acheiving this goal of high-fidelity quantum memory. Read More
— Electronics

Quantum computer closer: Optical transistor made from single molecule

Quantum photonics is a particularly attractive field to scientists and engineers alike in that it could, once some core issues have been resolved, allow for the production of integrated circuits that operate on the basis of photons instead of electrons, which would in turn enable considerably higher data transfer rates as well as dramatically reduced heat dissipation. Now in yet another important achievement on the road to quantum computing, researchers from ETH Zurich have managed to create an optical transistor from a single molecule. Read More
— Electronics

First electronic quantum processor points to new era in computing

A team of researchers at Yale University has managed to create a rudimentary all-electronic quantum processor that can perform simple algorithms, in what many see as an important step towards making quantum computing a reality. The processor can perform a few simple tasks, which have been demonstrated before with single nuclei, atoms and even photons, but this is the first time that such tasks have been performed in an all-electronic device that looks and feels much like a regular microprocessor. Read More
— Science

Manipulating light on a chip for quantum computing

Achieving quantum computing is not just a sheer matter of improving computational speed: it is a radically different paradigm that has attracted physicists and engineers for decades with its potential to solve problems across a number of domains — from database searches to prime number factorization and artificial intelligence. Now in a major breakthrough, a research team from the University of Bristol has achieved highly precise control of up to four photons on a silicon chip for the very first time. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement