Advertisement
more top stories »

Quantum Computing

— Electronics

All-optical transistor created

By - November 16, 2010 1 Picture
Researchers from Germany’s Max Planck Institute of Quantum Optics (MPQ) and the Swiss Ecole Polytechnique Federale de Lausanne (EPFL) have created a microresonator that produces vibrations from laser light. The device also uses one laser beam to control the intensity of another, thus making it essentially an optical transistor. The technology could have big implications in fields such as telecommunications. Read More
— Science

Physicists change color of photons in fiber optic cable

By - October 5, 2010 1 Picture
Physicists from the University of Oregon have successfully changed the color of individual photons within a fiber optic cable. They were able to do so by focusing a dual-color burst of light from two lasers onto an optical cable carrying a single photon of a distinct color. Through a process known as Bragg scattering, a small amount of energy was exchanged between the laser light and the photon, causing the photon to change color. The achievement could pave the way for transferring and receiving high volumes of secured electronic data. Read More
— Electronics

Laser-cooled molecules could pave way for quantum computing

By - September 27, 2010 1 Picture
In order for quantum computers to become a reality, it would be hugely helpful if scientists were able to supercool molecules. If a temperature of near absolute zero (-273C/-460F) could be achieved, then the oscillations associated with the molecules’ low energies could be used in the creation of quantum bits for use in quantum processors. Recently, researchers at Yale University got a step closer to that goal, by using laser light to cool molecules. Read More
— Science

Two-photon walk a giant stride for quantum computing

By - September 16, 2010 3 Pictures
Research conducted at the University of Bristol means a number of quantum computing algorithms may soon be able to execute calculations of a complexity far beyond what today's computers allow us to do. The breakthrough involves the use of a specially designed optical chip to perform what's known as a "quantum walk" with two particles ... and it suggests the era of quantum computing may be approaching faster than the scientific establishment had predicted. Read More
— Science

‘Terahertz’ speed signal processor an important step for optical computing

By - July 20, 2010 1 Picture
It’s a sign of the times when the speed of electrons moving through wires is seen as pedestrian, but that’s increasingly the case as technology moves towards the new world of optical communication and computing. Optical communication systems that use the speed of light as the signal are still controlled and limited by electrical signaling at the end. But physicists have now discovered a way to use a gallium arsenide nanodevice as a signal processor at “terahertz” speeds that could help end the bottleneck. Read More
— Science

Quantum computing breakthrough uses diamond nanowires

By - March 12, 2010 1 Picture
Current computers operate using binary coding; thousands to trillions of small electrical circuits representing a binary digit (bit) of information that represent a "1" when the circuit is switched on and a "0" when switched off by means of an electronic switch. The future of computing is to move this to a quantum scale, where the weird properties of subatomic particles can be used to create much faster computers. A new device developed by Harvard scientists which uses nanostructured diamond wire to provide a bright, stable source of single photons at room temperature represents a breakthrough in making this quantum technology a reality. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement

Subscribe to Gizmag's email newsletter

Advertisement