Introducing the Gizmag Store

Quantum Computing

The photonic chip next to a UK penny. The chip contains micrometer and sub-micrometer feat...

Research conducted at the University of Bristol means a number of quantum computing algorithms may soon be able to execute calculations of a complexity far beyond what today's computers allow us to do. The breakthrough involves the use of a specially designed optical chip to perform what's known as a "quantum walk" with two particles ... and it suggests the era of quantum computing may be approaching faster than the scientific establishment had predicted.  Read More

Experimental setup for THz-pump and optical-probe measurements used by the researchers

It’s a sign of the times when the speed of electrons moving through wires is seen as pedestrian, but that’s increasingly the case as technology moves towards the new world of optical communication and computing. Optical communication systems that use the speed of light as the signal are still controlled and limited by electrical signaling at the end. But physicists have now discovered a way to use a gallium arsenide nanodevice as a signal processor at “terahertz” speeds that could help end the bottleneck.  Read More

A high-energy laser pulse (red) can modify the state of a phosphorus electron (yellow) wit...

An international team of researchers from the University of Surrey, UCL, Heriot-Watt University and the FOM Institute for Plasma Physics have used infra-red laser to obtain precise control of the quantum superpositions of an electron in silicon for the first time . This feat marks yet another leap toward the dream of an affordable, fast and reliable quantum computer.  Read More

A diamond-based nanowire device (Illustrated by Jay Penni)

Current computers operate using binary coding; thousands to trillions of small electrical circuits representing a binary digit (bit) of information that represent a "1" when the circuit is switched on and a "0" when switched off by means of an electronic switch. The future of computing is to move this to a quantum scale, where the weird properties of subatomic particles can be used to create much faster computers. A new device developed by Harvard scientists which uses nanostructured diamond wire to provide a bright, stable source of single photons at room temperature represents a breakthrough in making this quantum technology a reality.  Read More

Jason Petta, an assistant professor of physics, has found a way to alter the property of a...

The superfast computers of tomorrow will likely be able to manipulate individual electrons, harnessing their charge and magnetism to achieve massive data storage and outstanding processing speeds at very low power requirements. But how exactly do you go about manipulating single electrons independently, without affecting the ones nearby? Princeton University's Jason Petta has recently demonstrated a way to do just that in a breakthrough for the field of spintronics that brings faster and low-power number-crunching closer to reality.  Read More

This single-atom transistor could prove extremely useful in the development of a better qu...

As far as transistor size is concerned, it doesn't get any smaller than this. An international group of researchers from the Helsinki University of Technology, the University of New South Wales and the University of Melbourne have successfully built a fully working transistor that is just one atom in size, smashing previous records and, more importantly, creating a very unique venue to study phenomena to be exploited in the rapidly developing field of quantum computing.  Read More

An electromagnetic waveguide placed on diamond crystals can deliver fields strong enough t...

Scientists at UC Santa Barbara have made important advances in the field of spintronics by demonstrating the ability to electrically manipulate, at room temperatures, the quantum states of electrons trapped in the atomic structural defects of diamond crystals. Despite previous indications to the contrary, such quantum states can be manipulated very quickly, even at gigahertz frequencies, paving the way to significantly faster quantum computing.  Read More

NIST postdoctoral researcher David Hanneke at the laser table used to demonstrate the firs...

In a paper recently published on Nature Physics, the National Institute of Standards and Technology (NIST) documented the implementation and verification of a two-qubit quantum computer that, according to researchers, is a truly general-purpose machine and could soon be used as a building block for much larger quantum computers.  Read More

An entangled state of six photons can form a quantum bit that is highly resistant to noise...

Quantum computing is expected to revolutionize electronics over the course of the next few decades, but a number of outstanding issues still remain. One such problem is that "qubits," the basic building blocks of quantum information, are very fragile and can be easily destroyed when sent on a fiber optics cable, due to the surrounding noise. Working on this issue, a team from Stockholm's KHT University, led by Magnus Rådmark, has developed a new method for combining six photons to obtain a robust qubit that is resistant to noise and is, therefore, able to travel long distances without interference.  Read More

Timing of the optical writing, write and read signals. (Photo: Haruka Tanji, Saikat Ghosh,...

Scientists are rapidly achieving important breakthroughs in quantum computing, from obtaining precise manipulation of four photons at the same time to the very first quantum processors. But just like in traditional electronics, a quantum computer can't be realized with information processing alone — we need a reliable way to store and retrieve quantum information too. A new breakthrough by MIT researchers represents a step forward in acheiving this goal of high-fidelity quantum memory.  Read More

Looking for something? Search our 26,499 articles