Advertisement
more top stories »

Quantum Computing

— Science

Making teleportation more energy-efficient

By - January 20, 2013 2 Pictures
An international team of researchers has achieved an important theoretical result by finding that quantum teleportation – the process of transporting quantum information at the speed of light, which could in theory be used to teleport macroscopic objects and, one day, even humans – can be achieved in a much more energy-efficient way than was previously thought. Read More
— Science

Quantum simulator brings hundreds of qubits to bear on physics problems

By - May 9, 2012 1 Picture
Physicists at the National Institute of Standards and Technology (NIST) have built a quantum simulator that contains hundreds of qubits - quite a jump from the the 2-8 qubits found in state-of-the-art digital quantum computers. The simulator has passed a series of important benchmarking tests and scientists are poised to study problems in material science that are impossible to model using classical computers. Read More
— Science

Majorana fermions – the answer to Life, the Universe, and Everything?

By - April 27, 2012 7 Pictures
Physicists at the Delft University of Technology, Netherlands, have achieved a milestone that might soon revolutionize the world of quantum computing, quantum physics, and perhaps shed new light on the mystery of the dark matter in our universe. Experimenting with nanoelectronics, a group led by Prof. Leo Kouwenhoven has succeeded in detecting the elusive Majorana fermion in the laboratory, without the need for a particle accelerator. Read More
— Electronics

Quantum computer with separate CPU and memory represents significant breakthrough

By - February 12, 2012 4 Pictures
John Martinis’ research group at the University of California at Santa Barbara has created the first quantum computer with the quantum equivalent of conventional Von Neumann architecture. This general-purpose programmable quantum computer is realized using superconducting circuits and offers greater potential for large-scale quantum computing than the one-problem devices that have been demonstrated in this emerging field to date. Read More
— Science

Perfectly secure cloud computing possible thanks to quantum physics

By - January 29, 2012 1 Picture
As numerous companies continue their push to get us to entrust our data to the cloud, there are many still justifiably concerned about the security of cloud computing-based services. Now an international team of scientists have demonstrated that perfectly secure cloud computing is possible by combining the power of quantum computing with the security of quantum cryptography. They carried out what they claim is the first demonstration of “blind quantum computing,” in which a quantum computation was carried out with the input, computation, and output all remaining unknown to the computer, and therefore, also any eavesdroppers. Read More
— Science

Atom-tall silicon wires pave way for quantum computers

By - January 9, 2012 2 Pictures
The world's narrowest silicon wires with a cross section of a mere four atoms by one atom have been created by a team of developers from the University of New South Wales, the University of Melbourne and Purdue University. The wires are fully functioning, with current-carrying capacity equivalent to that of a microprocessor's copper cable, despite being 20 times thinner - and 10,000 times narrower than a human hair. Read More
— Science

Scientists create real photons from virtual ones

By - December 1, 2011 1 Picture
A perfect vacuum is impossible to achieve, at least in theory. As anyone with any interest in quantum physics would know, the vacuum is full of various particles that fluctuate in and out of existence. These "virtual" particles have been the focus of scientist, Christopher Wilson. Working with his team at Sweden's Chalmers University of Technology, Wilson has succeeded in producing real photons from these virtual photons. Which, in layman's terms, means that they have created measurable light ... from nothing. Read More
— Science

Scientists successfully manipulate qubits with electrical fields

By - December 26, 2010 3 Pictures
Until now, the common practice for manipulating the electron spin of quantum bits, or qubits, – the building blocks of future super-fast quantum computers – has been through the use of magnetic fields. Unfortunately, these magnetic fields are extremely difficult to generate on a chip, but now Dutch scientists have found a way to manipulate qubits with electrical rather than magnetic fields. The development marks yet another an important development in the quest for future quantum computers, which would far outstrip current computers in terms of speed. Read More

Subscribe to Gizmag's email newsletter

Advertisement