Introducing the Gizmag Store

Purdue University

A new screening tool which uses a process known as 'transient absorption' to detect metall...

The use of semiconducting carbon nanotubes in place of conventional silicon components and circuits could revolutionize electronics, bringing us even faster and more power efficient devices. One of the problems in manufacturing these nanostructures is getting rid of unwanted metallic tubes, but researchers from Purdue University (PU), Indiana, hope a new screening tool which uses a process known as "transient absorption" to detect these impurities will provide a boost to the manufacturing process.  Read More

A first generation, self-calibratable MEMs that has been used to measure the Casimir force...

Micro electromechanical systems, or MEMs, are promising in an array of high-tech applications. However, the accuracy of conventional techniques to gauge the force and movement of tiny objects containing components so small they have to be measured on the scale of micrometers or nanometers are typically off by 10 percent or more because of their inherent uncertainties. A new technology enabling MEMs to "self-calibrate" could overcome this problem and make possible super-accurate and precise sensors for crime-scene forensics, environmental testing and medical diagnostics.  Read More

Test facility for nanowicks (Image: Purdue University School of Mechanical Engineering)

An advanced cooling technology being developed for high-power electronics in military and automotive systems is capable of handling roughly 10 times the heat generated by conventional computer chips. The new type of cooling system can be used to prevent overheating of devices called insulated gate bipolar transistors, high-power switching transistors used in hybrid and electric vehicles. The chips are required to drive electric motors, switching large amounts of power from the battery pack to electrical coils needed to accelerate a vehicle from zero to 60 mph in 10 seconds or less.  Read More

Students, Frederick Welck and Christian Bach, work with an experimental setup for testing ...

Heat pumps provide heating in winter and cooling in summer. While they’re OK for moderate climates, they are not efficient in extreme cold climates. Building on work that began five years ago, researchers at Purdue University are developing a new type of heat pump that is much more efficient and could allow residents in cold climates to cut their heating bills in half.  Read More

The new method for processing agricultural waste and any available biomass into biofuels t...

Biofuels are seen as a more environmentally friendly fuel source than petroleum-based fuels, but transporting the bulky biomass used to produce them is expensive because of their volume. It’s much more economical to transport the liquid fuel after it has been processed but this isn’t possible if the processing facilities are located far from the source of the biomass. A new method to process agricultural waste and other biomass could enable the creation of mobile processing plants that would rove the Midwest to produce fuels where the biomass is sourced.  Read More

Researchers are closer to using semiconducting nanowires to create a new generation of sma...

Researchers agree that chip manufacturers will soon reach a hard limit in terms of transistor miniaturization, disproving rule-of-thumb predictions that transistor density roughly doubles every 18 to 24 months. But a collaboration between IBM, Purdue University and the University of California in Los Angeles may have found a way to squeeze more transistor in the same area by building them vertically rather than horizontally.  Read More

The finline structure in finFETs allows for greater electrical insulation and processing s...

Researchers at Purdue University have reported important progress in developing finFETs, a type of transistor that some say will eventually substitute the silicon-based kind because it allows engineers to push miniaturization even further in the perpetual effort to validate the predictions of Moore's Law.  Read More

The research team from Purdue University holding a rocket launched earlier this year using...

Automobiles aren’t the only vehicles turning to more environmentally friendly fuel sources. As we reported recently, NASA are testing a new type of rocket propellant made of a mixture of water and “nanoscale aluminum” powder they claim could provide a cleaner way to launch rockets, power long-distance space missions and generate hydrogen for fuel cells. A number of readers wondered, not unreasonably, what qualifies a rocket fuel as eco-friendly. We now have a few more answers.  Read More

Researchers have found that using argon or helium during the nanotube growth process can i...

Researchers at the Honda Research Institute, Purdue University and the University of Louisville have discovered a way to systematically grow carbon nanotubes with either metallic or semiconducting properties, solving a long-standing problem in nanotechnology research and paving the way for the widespread use of nanotubes in electronics.  Read More

Purdue University's Tannaz Harirchian and Professor Suresh Garimella have developed a new ...

As an increasing number of hybrid-powered vehicles move from concept to completion, technology is battling to keep pace with some of the less-publicized technical challenges found among the complex electronics aboard these land- and air-based vehicles, computers and other devices. For instance, how do you effectively cool the electronics in a high-power electric motor that propels a passenger car from 0-60mph in under 10 seconds and uses regenerative braking to stop? Researchers in the U.S. believe the secret may lie in understanding precisely how fluid boils in tiny ‘microchannels’, which has led them to develop formulas and models that will help engineers design unique systems to cool high-power electronics found in today’s and tomorrow’s devices.  Read More

Looking for something? Search our 26,501 articles