Computational creativity and the future of AI

Purdue University

Purdue University's new app could keep unsuspecting travelers from ordering dishes such as...

Once when I was visiting Montreal, I went into a restaurant and discovered that the menu was entirely in French. Not wanting to admit that I couldn’t read the language, I was instead forced to order the only two things I recognized the names of: Caesar salad and calamari. Had smartphones been around at the time, I definitely could have used Purdue University’s new food translator app. It not only translates the names of foreign-language dishes, but it also tells you what they are and what’s in them.  Read More

The miniature device (right) that fits inside a tube (left) and can then be inserted into ...

Some cancers, such as pancreatic and cervical cancers, are notoriously hypoxic, which means they contain low oxygen levels. Because radiation therapy needs oxygen to be effective, hypoxic areas of a tumor can be difficult to kill. To combat this, researchers at Purdue University have developed and tested a miniature electronic device that is designed to be implanted into solid tumors to generate oxygen and boost the effectiveness of radiation and chemotherapy treatments.  Read More

Mike Scharf's work with termites has shown that the insects' digestive systems may help br...

Ethanol is the most commonly used biofuel worldwide and is made by fermenting the sugar components of plant materials, usually sugar and starch crops such as sugar cane, corn and wheat. The difficulty in accessing the sugars contained in woody biomass, coupled with criticism that the use of food crops for biofuel production has a detrimental effect on the food supply has prompted research into biofuels that can be made from cellulosic biomass, such as trees and grasses. By looking at the digestive system of termites, researchers have now discovered a cocktail of enzymes that unlocks access to the sugars stored within the cells of woody biomass that could help make it a more viable source of biofuels, such as ethanol.  Read More

A 'heat mean signature' of a human hand is used to perceive the six segments of the overal...

When we see a hand, regardless of whether it's open, in a fist, or pointing a finger, we still recognize it as a hand. If a computer has only been taught to recognize an open hand, however, it will probably have no idea what a fisted hand is. Getting computer vision systems to interpret images more like people do - to realize that a fist is a hand, for instance - has been one of the aims of artificial intelligence researchers for some time now. Things in that field may be about to take a step forward, however, as scientists from Indiana's Purdue University have just announced two new methods of three-dimensional object recognition, both based around heat diffusion.  Read More

A microchannel created using the laser scribing technique (Photo: Purdue University School...

A new manufacturing method that incorporates laser technology may result in thin film solar panels that are less expensive and more efficient than anything presently on the market. Currently, a stylus is used to mechanically etch microchannels into such panels, which electrically connect the individual solar cells and allow them to form an array. Researchers from Indiana’s Purdue University, however, are developing a technique in which an ultrafast pulsing laser is used to do the etching. Not only will it hopefully be quicker and cheaper than mechanical “scribing,” but it should also produce cleaner, sharper microchannels that offer superior performance.  Read More

Purdue mechanical engineering student Yaguo Wang works with a high-speed laser at the Birc...

The energy crisis has certainly catalyzed a great deal of thought about how we harvest all that energy we previously wasted. The petroleum-burning internal combustion engine has traditionally leaked energy from the exhaust system in the form of heat, but new ThermoElectric Generator (TEG) research at Purdue University aims to yield as much as a ten percent reduction in fuel consumption by converting heat from the exhaust into electricity. It is hoped that the thermoelectric research will eventually lead to other methods of turning waste heat into electricity in homes and power plants, new and more efficient solar cells and perhaps even a solid-state refrigerator.  Read More

A new screening tool which uses a process known as 'transient absorption' to detect metall...

The use of semiconducting carbon nanotubes in place of conventional silicon components and circuits could revolutionize electronics, bringing us even faster and more power efficient devices. One of the problems in manufacturing these nanostructures is getting rid of unwanted metallic tubes, but researchers from Purdue University (PU), Indiana, hope a new screening tool which uses a process known as "transient absorption" to detect these impurities will provide a boost to the manufacturing process.  Read More

A first generation, self-calibratable MEMs that has been used to measure the Casimir force...

Micro electromechanical systems, or MEMs, are promising in an array of high-tech applications. However, the accuracy of conventional techniques to gauge the force and movement of tiny objects containing components so small they have to be measured on the scale of micrometers or nanometers are typically off by 10 percent or more because of their inherent uncertainties. A new technology enabling MEMs to "self-calibrate" could overcome this problem and make possible super-accurate and precise sensors for crime-scene forensics, environmental testing and medical diagnostics.  Read More

Test facility for nanowicks (Image: Purdue University School of Mechanical Engineering)

An advanced cooling technology being developed for high-power electronics in military and automotive systems is capable of handling roughly 10 times the heat generated by conventional computer chips. The new type of cooling system can be used to prevent overheating of devices called insulated gate bipolar transistors, high-power switching transistors used in hybrid and electric vehicles. The chips are required to drive electric motors, switching large amounts of power from the battery pack to electrical coils needed to accelerate a vehicle from zero to 60 mph in 10 seconds or less.  Read More

Students, Frederick Welck and Christian Bach, work with an experimental setup for testing ...

Heat pumps provide heating in winter and cooling in summer. While they’re OK for moderate climates, they are not efficient in extreme cold climates. Building on work that began five years ago, researchers at Purdue University are developing a new type of heat pump that is much more efficient and could allow residents in cold climates to cut their heating bills in half.  Read More

Looking for something? Search our 31,282 articles
Editor's Choice
Product Comparisons