Decision time? Check out our latest product comparisons

Prosthetics

Researcher Lawrence Bonassar holds a fabricated ear created with a 3D printer (Photo: Lind...

When a child is born with the congenital deformity known as microtia, they have an underdeveloped external ear – also known as the pinna. Even though their inner ear may be normal, the lack of the external structure can affect their hearing, plus it looks unusual. Normally, a replacement pinna is made from a foam-like material (or sometimes even cartilage from the rib cage) and implanted under the skin, although these don’t always look particularly natural. Now, scientists from Cornell University have developed a more realistic pinna grown from biological material, using a 3D printer.  Read More

Liam impressed his doctors and classmates alike with his 'Robohand,' which was created by ...

According to the International Society of Prosthetics and Orthotics (ISPO), there are some 32 million amputees in the world today, around 80 percent (25 million) of whom live in developing countries where only five percent have been fitted with an artificial limb. It is estimated that 200,000 people lost a limb as a result of the 2010 Haiti earthquake alone. Two low-cost, printable prostheses highlight the potential impact 3D printing could have on the quality of life for millions as the technology becomes more accessible around the world.  Read More

Quadriplegic Jan Scheuermann prepares to take a bite out of a chocolate bar she is guiding...

Earlier this year, a 58 year-old woman who had lost the use of her limbs was successfully able to drink a cup of coffee by herself using a robotic arm controlled by her thoughts via a brain computer interface (BCI). Now, in a separate study, another woman with longstanding quadriplegia has been able to feed herself a chocolate bar using a mind-controlled, human-like robot arm offering what researchers claim is a level of agility and control approaching that of a human limb  Read More

Max Ortiz Catalan demonstrates how the system works with the aid of electrodes placed on t...

Researchers based at Chalmers University of Technology in Sweden have developed the world’s first thought-controlled, fully implantable robotic arm, which uses an amputee's own nerves and remaining muscles to afford a much more intuitive level of control than previously possible. Initial operations on patients are scheduled to take place during the Northern Hemisphere’s upcoming winter.  Read More

The FDA has approved clinical human trials of the ReFIT system (Photo: Joel Simon)

Researchers at Stanford University have developed a new algorithm suitable for brain-implantable prosthetic systems, or “neuroprosthetics,” which increases the effectiveness of mind-controlled computer cursor movement to a degree that approaches the speed, accuracy and natural movement offered by a real arm.  Read More

Zac Vawter prepares for 'SkyRise Chicago', a fundraiser for the Rehabilitation Institute o...

Despite losing most of his right leg in a motorcycle accident, Zac Vawter (31) intends to climb all 103 flights of stairs at Chicago's Willis Tower this Sunday. He's been helping researchers at the Rehabilitation Institute of Chicago (RIC) test a cutting-edge bionic leg that is controlled by his own nerve impulses. He can walk, kick a ball, and climb stairs by simply thinking of what he wants his leg to do.  Read More

Buttoning a shirt is one of the 18 tasks assessed (Photo: Linda Resnik, U.S. Department of...

Researchers at Brown University have devised a series of "metrics" designed to monitor the progress of prosthetics patients. The metrics measure the performance of patients with prosthetic arms when carrying out 18 household tasks such as putting on a shirt, pouring soda and tying shoelaces.  Read More

An amputee tests the AMP-Foot 2.0 on a treadmill

The majority of protheses available today that replace the lower leg, ankle, and foot are passive devices that store energy in an elastic element (similar to a coiled spring) at the beginning of a step and release during push-off to give you some added boost. While this type of prosthetic is energy efficient, it doesn't replicate the full power we get from our muscles. In order to provide that kind of energy an actuator is required, and these are often heavy and bulky. Researchers at Belgium's Vrije Universiteit Brussel have streamlined the technology in a device they call the AMP-Foot (Ankle Mimicking Prosthetic Foot).  Read More

The prototype prosthetic finger

When South African craftsman Richard Van As lost most of the fingers from his right hand in an industrial accident, he decided to try and create a prosthetic finger to regain some of his lost mobility. In order to bring this about, Richard recruited the help of Washington State native Ivan Owen, after being impressed with the latter's mechanical hand prop which he had posted on YouTube. The result could be a boon to amputees everywhere.  Read More

The BioTac sensor can correctly identify a randomly selected material from a a sample of 1...

We’ve seen the development of a number of technologies that could be used to provide robots with a sense of touch, such as proximity and temperature sensing hexagonal plates and artificial skin constructed from semiconductor nanowires. However, perhaps none are as impressive as a tactile sensor developed by researchers at the University of California’s Viterbi School of Engineering. The group’s BioTac sensor was built to mimic a human fingertip and can outperform humans in identifying a wide range of materials, offering potential use for the technology in robotics and prostheses.  Read More

Looking for something? Search our 29,156 articles