Advertisement

Plasmonics

The use of optical sound-on-film recording on early movie films revolutionized the motion picture industry and remained the standard method of audio recording in that medium for more than 80 years. Now researchers from the University of Illinois have emulated that feat in miniature by claiming to have recorded the world's first optically encoded audio onto a plasmonic film substrate. The size of human hair, this substrate has a capacity over five-and-a-half thousand times greater than conventional analog magnetic recording media. Read More
Holography is one of the more dramatic forms of photography, in which a three-dimensional image is stored on a photographic plate in the form of interference fringes. Researchers at Purdue University in Indiana have developed a different approach, in which a 3D image is stored in a structure of thousands of V-shaped nanoantennas etched into an ultrathin gold foil. The new approach dramatically shrinks the size of a hologram, potentially enabling photonic and plasmonic devices and optical switches small enough to be integrated into computer chips. Read More
Researchers from the University of Minnesota and Seoul National University have developed a new lithographic method with the help of a very low-tech tool: Scotch Magic tape. This new method, which promises to enhance our ability to fabricate nanostructures, has been used to build highly nonlinear optical materials consisting of sheets of 25 micron (0.001 in) metal blocks separated by nanometer-wide insulating channels. As light squeezes through these channels, incompletely understood plasmonic effects enable novel optical behavior. Read More
Engineers at the California Institute of Technology (CalTech) and the University of California at Berkeley have developed a nanofocusing waveguide, a tiny passive plasmonic device which is capable of concentrating light onto a spot a few nanometers in size. In so doing, they have sidestepped the diffraction-limited nature of light, which normally prevents focusing light to a spot smaller than its own wavelength. This remarkable feat may lead to new optoelectronic applications in computing, communications, and imaging. Read More
Plasmonics is a promising emerging technology that attempts to put together the best of two worlds — optics and electronics — to achieve faster computation and communication by making optical devices significantly smaller. In recent research, a team of European scientists has solved a long-standing problem in this field by sending signals over a long distance in a breakthrough that brings this technology much closer to mass production. Read More
Advertisement