Advertisement
more top stories »

Photosynthesis


— Energy

Solar-powered hydrogen generation using two of the most abundant elements on Earth

One potential clean energy future requires an economical, efficient, and relatively simple way to generate copious amounts of hydrogen for use in fuel-cells and hydrogen-powered vehicles. Often achieved by using electricity to split water molecules into hydrogen and oxygen, the ideal method would be to mine hydrogen from water using electricity generated directly from sunlight without the addition of any external power source. Hematite – the mineral form of iron – used in conjunction with silicon has shown some promise in this area, but low conversion efficiencies have slowed research. Now scientists have discovered a way to make great improvements, giving hope to using two of the most abundant elements on earth to efficiently produce hydrogen.

Read More
— 3D Printing

World’s first photosynthetic living matter-infused 3D-printed wearable

Speaking at the 2015 TED conference in Vancouver, Canada, MIT professor Neri Oxman has displayed what is claimed to be the world’s first 3D-printed photosynthetic wearable prototype embedded with living matter. Dubbed "Mushtari," the wearable is constructed from 58 meters (190 ft) of 3D-printed tubes coiled into a mass that emulates the construction of the human gastrointestinal tract. Filled with living bacteria designed to fluoresce and produce sugars or bio-fuel when exposed to light, Mushtari is a vision of a possible future where symbiotic human/microorganism relationships may help us explore other worlds in space. Read More
— Architecture

Urban Algae Canopy will generate a 4-hectare forest's worth of oxygen

London's ecoLogicStudio has demonstrated a full-scale prototype of its urban algae canopy at the "Feeding the Planet" expo in Milan. This "bio-digital" structure sees fluid filled with microalgae organisms pumped around an otherwise transparent shelter to produce dynamic shade, energy in the form of biomass, and an impressive amount of oxygen, while responding to the presence of visitors to produce interesting visual effects.

Read More
— Environment

Artificial photosynthesis breakthrough turns CO2 emissions into plastics and biofuel

Scientists at the Lawrence Berkeley National Laboratory and the University of California, Berkeley have created a hybrid system of bacteria and semiconducting nanowires that mimics photosynthesis. According to the researchers, their versatile, high-yield system can take water, sunlight and carbon dioxide and turn them into the building blocks of biodegradable plastics, pharmaceutical drugs and even biofuel. Read More
— Environment

Moth eyes inspire more efficient photoelectrochemical cells

As nocturnal creatures, moths need to maximize how well they can see in the dark whilst remaining less visible to avoid predators. This ability to collect as much of the available light as possible and at the same time reflect as little as possible, has inspired Researchers at the Swiss Federal Laboratories for Materials Science and Technology (Empa) to design a new type of photoelectrochemical cell using relatively low cost materials. Read More
— Science

Hybrid energy system mimics processes in photosynthesis

Artificially replicating the biological process of photosynthesis is a goal being sought on many fronts, and it promises to one day improve light-to-energy efficiencies of solar collection well beyond what's possible with photovoltaic cells. One of the first steps is to imitate the mechanisms at work in the transfer of energy from reception through to output. To this end, Scientists have recently experimented with a combination of biological and photonic quantum mechanical states to form new half-light half-matter particle, called the “polariton.” It could help realize fully synthetic systems by mimicking the energy transport systems of biological photosynthesis. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement