Shopping? Check out our latest product comparisons

Photonics

Researchers have designed coupled lasers that act as general-purpose optical logic gates

High hopes have been maintained for decades concerning optical logic, optical switching matrices (e.g. for communications), and optical computing. The missing link in actualizing this promise is a practical circuit element that allows one light to be turned on or off purely by application of another light to the device - rather like voltage on the control gate of a field effect transistor. This missing link has now been developed through a novel application of the complex behavior exhibited by coupled lasers.  Read More

The new super-black coating made from hollow carbon nanotubes prevents reflection because ...

When it comes to gathering measurements of objects so distant in the universe that they can no longer be seen in visible light, the smallest amount of stray light can play havoc with the sensitive detectors and other instrument components used by astronomers. Currently, instrument developers use black paint on baffles and other components to help prevent stray light ricocheting off surfaces, but the paint absorbs only 90 percent of the light that strikes it. NASA engineers have now developed a nanotech-based coating that absorbs on average more than 99 percent of the ultraviolet, visible, infrared, and far-infrared light that hits it, making it promising for a variety of space- and Earth-bound applications.  Read More

HyperSolar intends to produce a thin, flat, clear solar concentrator, that could boost the...

Solar cells are the most expensive part of a solar panel, so it would follow that if panels could produce the same amount of electricity with less cells, then their prices would come down. In order for panels to be able to do so using existing cell technology, however, they would need to get more light to the fewer cells that they still had. Mounting the panels on the end of vertical poles to get them closer to the sun is one possible approach, that might work in the town of Bedrock or on Gilligan’s Island. A better idea, though, is to apply a clear layer of solar concentrators to the surface of a panel – and that’s just what HyperSolar intends to do.  Read More

IBM Scientists (L to R) Yurii Vlasov, William Green and Solomon Assefa have unveiled a new...

IBM has announced another breakthrough in its long term research goal to harness the low power consumption and incredible speed promised by optical computing. Following on from the Germanium Avalanche Photodetector – a component able to receive optical information signals at 40 Gb/sec and multiply them tenfold using a mere 1.5V supply – the company has now unveiled a new chip technology that integrates electrical and optical devices on the same piece of silicon. So how far can this technology take us? Eventually, IBM hopes, all way to the Exascale – that's one million trillion calculations per second.  Read More

A waveguide optical switch uses an array of optical switching elements to connect the path...

Fujitsu Laboratories has unveiled a new optical switch technology that it claims uses half the power of conventional optical switches. The new optical waveguide switch uses photonics made from silicon germanium (SiGe) instead of pure-silicon semiconductor material. This technology will be the basis for a new generation of high-speed optical switches capable of operating across a wide range of wavelengths, while featuring perhaps the world’s lowest power requirements.  Read More

The photonic chip next to a UK penny. The chip contains micrometer and sub-micrometer feat...

Research conducted at the University of Bristol means a number of quantum computing algorithms may soon be able to execute calculations of a complexity far beyond what today's computers allow us to do. The breakthrough involves the use of a specially designed optical chip to perform what's known as a "quantum walk" with two particles ... and it suggests the era of quantum computing may be approaching faster than the scientific establishment had predicted.  Read More

Eric Glowacki, one of the membrane's inventors, is pictured holding the membrane that chan...

Colored lights have been controlling the flow of motorists since the first traffic light was installed in 1868 in London. Now scientists have developed a membrane that uses colored light to control the flow of gas. The membrane blocks gas from flowing through it when one color of light is shined on its surface, and permits gas to flow through when another color of light is used. The technology could be useful in research applications and controlled drug delivery as well as industrial processing tanks that require the ability to turn the flow of gas on and off safely.  Read More

Intel engineer, Dr. Mario Paniccia, holds the thin optical fiber used to carry data from o...

Today’s computer components are connected to each other using copper cables or traces on circuit boards. Due to the signal degradation that comes with using metals such as copper to transmit data, these cables have a limited maximum length. This limits the design of computers, forcing processors, memory and other components to be placed just inches from each other. Intel has announced an important breakthrough that could see light beams replace the use of electrons to carry data in and around computers, enabling data to move over much longer distances and at speeds many times faster than today’s copper technology.  Read More

Members of the Rensselaer terahertz sensing research team (Photo: Rensselaer/Daria Robbins...

Hidden explosives, chemical weapons, biological agents and illegal drugs could one day be optically detectable from up to 20 meters away. How? Well, every substance has its own unique terahertz (THz) radiation “fingerprint”, the waves of which pass through anything other than metal or liquid. Scientists from New York state’s Rensselaer Polytechnic Institute are working on a way of analyzing those waves, then determining what substance they’re emanating from. The process would be harmless to both the subject and the observer, and could make the world a much safer place.  Read More

As the electric current of the strontium barium niobate crystal was altered, the noisy ima...

Noise in images is generally held to be a bad thing, but engineers from Princeton University have used a nonlinear material to steal energy from image noise to reveal hidden or obscured objects. The engineers see the technology as potentially paving the way for improvements to radar systems, sonograms and stenography offering the possibility of allowing pilots to see through fog and doctors to look inside the human body without surgery  Read More

Looking for something? Search our 28,109 articles