Purchasing new hardware? Read our latest product comparisons


In 1905, Albert Einstein provided an explanation of the photoelectric effect – that various metals emit electrons when light is shined on them – by suggesting that a beam of light is not simply a wave of electromagnetic radiation, but is also made up of discrete packets of energy called photons. Though a long accepted tenet in physics, no experiment has ever directly observed this wave/particle duality. Now, however, researchers at the École polytechnique fédérale de Lausanne (EPFL) in Switzerland claim to have captured an image of this phenomenon for the first time ever. Read More
A successful test in passing information from light into matter – using the teleportation of the quantum state of a photon via optical fiber cable to a receiving crystal located over 25 km (15 mi) away – has been claimed by physicists at the University of Geneva. This test shattered the same team’s previous record and may herald the development of greater, long-distance teleportation techniques and qubit communications and computing capabilities. Read More
In what could be a landmark moment in the history of science, physicists working at the Blackett Physics Laboratory in Imperial College London have designed an experiment to validate one of the most tantalizing hypotheses in quantum electrodynamics: the theory that matter could be created using nothing more than pure light. Read More
Scientists from Harvard and MIT have jointly demonstrated that, in specific conditions, photons can be made to interact with each other and form molecules. Such groupings of photons, dubbed “Photonic molecules”, constitute an entirely new form of matter, which until recently was purely theoretical. Combining the properties of light and those of solids, in terms of physics this new form of matter is not unlike a certain material that millions of Star Wars fans are already well familiar with. Lightsaber material. Read More
Quantum entanglement, one of the odder aspects of quantum theory, links the properties of particles even when they are separated by large distances. When a property of one of a pair of entangled particles is measured, the other "immediately" settles down into a state compatible with that measurement. So how fast is "immediately"? According to research by Prof. Juan Yin and colleagues at the University of Science and Technology of China in Shanghai, the lower limit to the speed associated with entanglement dynamics – or "spooky action at a distance" – is at least 10,000 times faster than light. Read More
Left to its own ways, light will follow the same path through an optical system whether the system is being used as a camera lens or as a projector. This is called time-reversal symmetry, or reciprocity. As many new applications and methods would be enabled by access to a non-reciprocal optical system, it is unfortunate that they have been so difficult to come by. But now researchers at Stanford University have discovered how to make such non-reciprocal systems by generating an effective magnetic field for photons. Read More
The establishment of a worldwide quantum internet would provide individuals, businesses, organizations, and governments access to intrinsically secure communications. However, absorption of photons in transit between internet nodes can dramatically reduce the efficiency of such a quantum internet. Now a research group at Australia's (CQCCT) has invented a way to recover some of the lost quantum information by teleporting the original information to another photon. Read More
A recent study of gamma-ray bursts by Professor Robert Nemiroff and his colleagues at Michigan Technological University provides the first strong evidence concerning the small-scale smoothness of spacetime. Oddly, this examination of the very small is accomplished by measuring a handful of gamma-rays after they traveled over ten billion light years. Read More
According to Einstein’s restricted theory of relativity, nothing can travel faster than light in a vacuum. Up until today, that had pretty much seemed to be the case, too. Early this morning, however, researchers from the Geneva-based OPERA project announced that the results from one of their recent experiments indicate that neutrinos can in fact outrun light particles. Read More
Researchers from Germany’s Max Planck Institute of Quantum Optics (MPQ) and the Swiss Ecole Polytechnique Federale de Lausanne (EPFL) have created a microresonator that produces vibrations from laser light. The device also uses one laser beam to control the intensity of another, thus making it essentially an optical transistor. The technology could have big implications in fields such as telecommunications. Read More