Highlights from the 2014 LA Auto Show

Particle physics

Dark matter may come in the form of macroscopic objects as massive as Ceres and as dense a...

Scientists have struggled for decades to identify the constituent particles of dark matter, but they’ve had little to show for all their efforts. A new study at Case Western Reserve University is now advancing the radical new hypothesis that dark matter may in fact be made not of exotic subatomic particles, but rather of macroscopic objects which would mass anywhere from a tennis ball to a dwarf planet, be as dense as a neutron star, and still be adequately described by the Standard Model of particle physics.  Read More

A new app can help turn your smartphone into a detector of cosmic rays thought to emanate ...

There are all sorts of apps available for smartphones to show atmospheric phenomena like wind speed, temperature, and rainfall along with other observations for tides and phases of the moon. But how about something really cool like an app for measuring the amount of interstellar cosmic radiation hitting the earth? A professor of physics from the University of Wisconsin thought that would be cool as well, and created an app to turn your smartphone into a cosmic ray detector that works in a similar way to those instruments found in high-tech observatories and mega-expensive laboratories.  Read More

An international research collaboration has confirmed that the potential Higgs boson does ...

Fresh evidence has come to light supporting the theory that the particle detected at CERN's Large Hadron Collider (LHC) in 2012 is indeed the elusive Higgs boson. The work is the result of an international collaboration led by researchers from MIT, and confirms that the potential Higgs boson does exhibit the decay characteristics that would be expected under the Standard Model.  Read More

HADES at the GSI in Darmstadt/Germany searches for dark matter candidates (Image: A. Schma...

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Dresden, Germany have analyzed data from the HADES particle detector and concluded that the so-called "dark photons" are not the constituents of dark matter. Dark photons, or U bosons, are hypothetical particles that had thus far been the main candidate for that role, and this new result could make the search for the dark matter particle even more challenging than before.  Read More

Looking back on a year filled with scientific accomplishment

The close of 2013 gives us an excellent opportunity, though satiated with holiday feasts, to look back on a year that has been filled with scientific accomplishment. So it's time to get comfortable on your Binary Chair, sip your hot cocoa from a phase-change mug while your Foodini prints out a batch of cookies and reflect on science stories of note from the past year.  Read More

Roman lead ingot from the Bou Ferrer shipwreck (Photo: Directorate-General de Cultura, Ali...

The study of archaeology has long been carried out using tools from the physics lab. Among these are carbon-14 dating, thermoluminescence dating, x-ray photography, x-ray fluorescence elemental analysis, CAT and MRI scanning, ground-penetrating sonar and radar, and many others. What is less well known is that archaeology has also made substantial contributions to physics. This is the story of old lead; why it is important to physics, and what ethical problems it presents to both sciences.  Read More

The Nobel Medal awaits Francois Englert and Peter Higgs, winners of the 2013 Nobel Prize i...

Following a last-minute delay, physicists Francois Englert and Peter Higgs were today jointly awarded the 2013 Nobel Prize in Physics for their independent formulation of the Higgs mechanism, which supplies fundamental particles with mass. Their theory was recently validated by the discovery of a Higgs boson at CERN's Large Hadron Collider.  Read More

Quantum black hole study finds bridge to another Universe (Image: Shutterstock)

Physicists have long thought that the singularities associated with gravity (like the inside of a black hole) should vanish in a quantum theory of gravity. It now appears that this may indeed be the case. Researchers in Uruguay and Louisiana have just published a description of a quantum black hole using loop quantum gravity in which the predictions of physics-ending singularities vanish, and are replaced by bridges to another universe.  Read More

A schematic drawing of the Q-Weak experiment, showing how the scattered electrons are anal...

Researchers at the Jefferson Accelerator Laboratory have measured the weak charge of the proton for the first time. Early results from the Q-Weak experiment find the weak charge of the proton and the neutron to be consistent with predictions of the Standard Model.  Read More

Inside the tunnel of the Fermilab Main Injector proton accelerator - the driving power beh...

Particle physicists have been eagerly awaiting the first trials of the new Main Injector neutrino beam at the Fermi National Accelerator Laboratory in the US. This new facility is the result of reconfiguration of the Fermilab particle accelerators in the wake of the shutdown of the Tevatron in 2011. The new beam source is now online, and is well on route to becoming the world's most intense focused neutrino source.  Read More

Looking for something? Search our 29,533 articles