Top 100: The most desirable cars of all time

Pacemaker

The energy-harvesting device, attached to a pig's heart

Although cardiac pacemakers have saved countless lives, they do have at least one shortcoming – like other electronic devices, their batteries wear out. When this happens, of course, surgery is required in order to replace the pacemaker. While some researchers are looking into ideas such as drawing power from blood sugar, Swiss scientists from the University of Bern have taken another approach. They’ve developed a wristwatch-inspired device that can power a pacemaker via the beating of the patient’s own heart.  Read More

New technology allows the heart to become its own pacemaker (Image: Shutterstock)

Pacemakers serve an invaluable purpose, by electrically stimulating a recipient's heart in order to keep it beating at a steady rate. The implantation of a pacemaker is a major surgical procedure, however, plus its presence in the body can lead to complications such as infections. Now, for the first time, scientists have instead injected genes into the defective hearts of pigs, converting unspecialized heart cells into "biological pacemakers."  Read More

A group of researchers has developed a pacemaker powered by an implantable flexible piezoe...

Over the past few decades, cardiac pacemaker technology has improved to the point that pacemakers have become a commonplace medical implant that have helped improve or save the lives of many millions of people around the world. Unfortunately, the battery technology used to power these devices has not kept pace and the batteries need to be replaced on average every seven years, which requires further surgery. To address this problem, a group of researchers from Korea Advanced Institute of Science and Technology (KAIST) has developed a cardiac pacemaker that is powered semi-permanently by harnessing energy from the body's own muscles.  Read More

Tiny, wirelessly-charged medical devices implanted deep inside the human body could treat ...

Researchers at Stanford University have developed a new way to safely transfer energy to tiny medical devices implanted deep inside the human body. The advance could lead to the development of tiny "electroceutical" devices that can be implanted near nerve bundles, heart or brain tissue and stimulate them directly when needed, treating diseases using electronics rather than drugs.  Read More

The Nanostim pacemaker, with a Euro coin for scale

Ordinarily, a pacemaker is surgically implanted below the collarbone, where it sits in a sizable pocket under the skin. Electrical leads run from it to the heart, allowing it to monitor the rhythm of the heartbeat, and deliver electrical pulses to adjust that rhythm as needed. Now, however, Minnesota-based St. Jude Medical has announced upcoming availability of "the world’s first and only commercially available leadless pacemaker." Known as the Nanostim, it's reportedly less than 10 percent the size of a regular pacemaker, and is inserted directly into the heart via a minimally-invasive procedure.  Read More

Ordinary heart cells have been transformed into working replicas of SAN cells, which allow...

Scientists at the Cedars-Sinai Heart Institute have successfully reprogrammed ordinary heart cells to become exact replicas of so-called “pacemaker” heart cells. Such replica cells could conceivably one day be used instead of electronic pacemakers, in patients with heart disease.  Read More

Scientists are looking into treating Alzheimer's disease by applying tiny shocks to the br...

The process of deep brain stimulation involves using a pacemaker-like implanted device to apply controlled mild electrical pulses to specific areas of the brain. In recent studies, it has been used – with some success – to treat conditions such as Parkinson's disease, major depression and Tourette syndrome. Now, in the ADvance Study, researchers at several research centers are exploring its use in restoring memory function to people with Alzheimer’s disease.  Read More

Regular implantable defibrillators (like this one) may save patients' lives, but also infl...

While regular pacemakers attempt to rectify arrhythmias (irregular heart beat rhythms) using constantly-delivered electric pulses, implantable cardioverter defibrillators do something a bit different. As long as everything stays normal, they don’t do any shocking – when they detect a dangerously fast heart beat, however, they respond by delivering a massive jolt of electricity to the heart. While this may save the patient’s life, it’s also very traumatic and painful. Now, a team of scientists from Washington University in St. Louis may have come up with a solution to that problem.  Read More

How long before an alternative is found to battery-powered pace makers like this? (Photo: ...

Research using a prototype piezoelectric energy-harvesting device developed by the University of Michigan suggests that the human heart provides more than enough energy to power a pacemaker, according to a statement released by the American Heart Association. The research has led to fresh speculation that piezoelectricity, electricity converted from mechanical stresses undergone by a generator, may one day provide an alternative to battery-powered pacemakers that need to be surgically replaced as often as every five years.  Read More

Fraunhofer's external transmitter, which is paired with an internal mobile generator

When it comes to implantable electronic devices such as pacemakers, biosensors or drug-delivery devices, there are a few options regarding power sources. While batteries could be used in some applications, doing so would require surgically replacing the implant when its battery runs out. Radio wave-based and inductive systems are instead often used, in which power is “beamed” to the device from a source outside the body. According to researchers from Germany’s Fraunhofer Institute for Ceramic Technologies and Systems, however, such systems often have a limited range, and are easily affected by factors such as location, position and movement. Instead, they’ve developed what they claim is a better, more versatile system.  Read More

Looking for something? Search our 29,888 articles
Editor's Choice
Product Comparisons