Advertisement
more top stories »

Optogenetics


— Medical

Implantable device hits targeted brain cells with light and drugs when triggered remotely

By - July 17, 2015 1 Picture

The field of optogenetics where individual brains cells are made to behave differently when exposed to light has wide-ranging potential. It may one day be used to reverse acquired blindness, alter pain thresholds and even hit the rest button on our biological clocks. With one eye on this emerging area of neuroscience, scientists have developed a device the width of a human hair that can be planted in the brain to deliver light or drugs only where needed, offering better targeted treatments and reduced side effects.

Read More
— Health and Wellbeing

Optogenetic therapy shows promise for reversing acquired blindness

By - May 10, 2015 2 Pictures

Across the world many millions of people suffer from inherited conditions that progressively degenerate the light-sensing cells in their eyes, and eventually send them blind. Recently, however, researchers from the University of Bern and the University of Gottingen have developed a way to possibly reverse this damage by using a newly-developed, light-sensitive protein embedded into other cells in the retina to restore vision.

Read More
— Health and Wellbeing

Scientists hit upon new reset button for biological clocks

By - February 2, 2015 2 Pictures
Those working through the night or regularly falling victim to jet lag may be familiar with the physical toll of disrupting our biological clocks. Progress has been made in understanding how our bodies can better adjust to these disruptions, but scientists have now discovered a "reset button" that could lead to new possibilities for treatments to get our bodies back in sync. Read More
— Medical

Nanotube film could replace defective retinas

By - December 4, 2014 2 Pictures
A promising new study suggests that a wireless, light-sensitive, and flexible nanotube-semiconductor nanocrystal film could potentially form part of a prosthetic device to replace damaged or defective retinas. The film both absorbs light and stimulates neurons without being connected to any wires or external power sources, standing it apart from silicon-based devices used for the same purpose. It has so far been tested only on light-insensitive retinas from embryonic chicks, but the researchers hope to see the pioneering work soon reach real-world human application. Read More
— Science

Inception: Artificial memories implanted in mice

By - August 1, 2013 2 Pictures
An ongoing collaboration between the Japanese Riken Brain Science Institute and MIT’s Picower Institute for Learning and Memory has resulted in the discovery of how to plant specific false memories into the brains of mice. The breakthrough significantly extends our understanding of memory and expands the experimental reach of the new field of optogenetics. Read More
— Science

Tiny new LEDs can be injected into the brain

By - April 16, 2013 3 Pictures
Optogenetics is the process by which genetically-programmed neurons or other cells can be activated by subjecting them to light. Among other things, the technology helps scientists understand how the brain works, which could in turn lead to new treatments for brain disorders. Presently, fiber optic cables must be wired into the brains of test animals in order to deliver light to the desired regions. That may be about to change, however, as scientists have created tiny LEDs that can be injected into the brain. Read More
— Robotics

Light-activated skeletal muscle “blurs the boundary between nature and machines”

By - September 5, 2012 1 Picture
In Sir Arthur C. Clarke’s 1972 novel Rendezvous with Rama, the explorers of a seemingly deserted alien spaceship passing through our Solar System encounter a strange three-legged creature that turns out to be an organic robot. In the ‘70s, this seemed so incredible that it could only be the product of an alien civilization thousands of years ahead of us. In 2012, scientists at MIT and the University of Pennsylvania are proving otherwise by starting work on organic robots here on Earth. Using genetically engineered muscle tissue that responds to light, they are blurring the line between animal and machine at the cellular level. Read More
— Medical

Monkeys' brains controlled using light

By - July 29, 2012 1 Picture
We've all been there. Your monkey is throwing a fit, jumping on the furniture, screeching like a furry banshee and hurling unmentionable things all over the place. At times like this, wouldn't it be great if you could just shine a light and control the monkey’s brain? Sorry, that isn’t possible (yet), but researchers have succeeded in stimulating a monkey’s brain with a remarkable level of precision using impulses of light aimed at specific kinds of neural cells. It may not be much help to desperate monkey owners, but it does provide hope of new treatments for sufferers of many neurological disorders. Read More
— Health and Wellbeing

Light controlled pacemakers on the horizon

By - August 24, 2011 1 Picture
There's no denying that pacemakers are life-saving devices, but they do have their limitations. These include the facts that their metal leads can break, they need to be surgically accessed if their batteries run out, and they can be disrupted by strong magnetic fields. Some or all of these problems may one day become things of the past, however, due to research currently being conducted at New York's Stony Brook University - scientists there are working towards the development of pacemakers that control the heart through pulses of light. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement

Subscribe to Gizmag's email newsletter

Advertisement