Advertisement
more top stories »

Optics


— Robotics

Robots with "eyes" in their hands may prove more dextrous than others

When we think of robots, we all too often anthropomorphize them by giving them eyes in their heads, fingers on their hands, and toes on their feet. But just because this is the way humans evolved doesn’t make it ideal. Robots with eyes where they need them most, for example, could be much more efficient than just having them restricted to one place. In this vein, researchers at Carnegie Mellon University (CMU) recently developed a tri-fingered robotic hand with numerous inbuilt optical detectors to act as adjunct sensors. At the same time, they also fashioned a new type of stretchable optical sensor to accompany such devices.

Read More
— Mobile Technology

Smartphone microscope lens that costs just pennies to make

Microscopes can be expensive pieces of gear, making access difficult – or non-existent – for students and medical staff in isolated and poorer locales. To help address this, researchers at the University of Houston (UH) have fashioned a lens designed to fit on almost any smartphone. It has the ability to magnify images up to 120 times their original size, and at an estimated production cost of just three cents per lens.

Read More
— Space Feature

25 years in orbit: A celebration of the Hubble Space Telescope

April 24 will mark a significant milestone in the life of one of mankind's greatest scientific instruments – the 25-year anniversary of the launch of the Hubble Space Telescope. This bus-sized piece of scientific equipment has become a household name, thanks to the incredible scientific insights and iconic images it has returned over the course of a quarter-century in low-Earth orbit. Join us as we celebrate the history and achievements of NASA's flagship space telescope. Read More
— Electronics

Optical antenna may allow LEDs to replace lasers in host of devices

By applying 120 year old radio frequency antenna theory to the much newer field of photonics, researchers at Lawrence Berkeley National Laboratory claim to have produced a prototype optical antenna that increases the intensity of emission from a nanorod light source by more than 115 times. This technique may offer the opportunity to replace power-hungry lasers in short-range optical communications devices with enhanced low-power LEDs. Read More
— Electronics

Prototype system paves way for huge, glasses-free 3D displays

Using red/blue filters (anaglyph), polarized (passive) or LED shutter (active) glasses are relatively simple ways of creating a 3D effect. Creating 3D pictures without viewers having to don any form of eyewear is a little trickier and is made even more so if you want really big 3D effects for a sports stadium or a billboard. To help address this, Austrian scientists working at the Vienna University of Technology (TU Vienna) and the company TriLite Technologies have developed a new kind of display just for this purpose that sends beams of light directly to the viewers’ eyes via a laser and a sophisticated mirror system. Read More
— Science

Amsterdam Central train station sports a high-tech rainbow

Every night, for just a short time after sunset, Amsterdam Central Station becomes Rainbow Station. A four-kilowatt spotlight projects a stunning rainbow through a custom-designed liquid crystal spectral filter onto one of the station's 45 by 25 meter (148 by 82 feet) roof arches, just above platform 2b. This liquid crystal optics technology is being developed for research on exoplanets, but it will light up Amsterdam Central – and the lives of thousands of travellers – every night for a year. Read More
— Electronics

Energy-efficient 3D display maintains images without power

Liquid Crystal Displays (LCDs) are a common and increasingly pervasive method of displaying information for everything from watches to giant TV screens. Though, like most other displays, LCDs require electrical energy to constantly display an image. Researchers from the Hong Kong University of Science and Technology, however, have produced an ultra-thin LCD screen prototype that is not only capable of displaying images without continuous power, but in 3D as well. Read More
— Electronics

"Smart glass" iris could bring greater quality and flexibility to smartphone cameras

In a conventional camera lens, the iris consists of a set of overlapping mechanical blades that control the amount of light entering the camera. As efficient as this mechanical system is, it is too bulky and too difficult to miniaturize to be incorporated in smartphones and other compact devices. To address this, a team of researchers has used "smart glass" to create a micro-sized electronic iris that may bring much greater image quality and flexibility to smartphone cameras. Read More
— Science

How do you make a 1-cent microscope lens? Just bake a batch in the oven

Microscope lenses are typically made either by grinding and polishing glass discs, or pouring polymers into molds – both techniques can be quite involved, which is reflected in the price of the finished product. Now, however, a scientist from Australian National University has devised a new lens-making process, in which drops of silicone are simply baked in an oven. The resulting lenses can be used for a variety of applications, yet are worth less than one cent each. Read More
— Good Thinking

Rooftop panels could bring more light to shady alleyways

Everyone knows that downtown alleyways are dark at night, but even in the daytime, shadows cast by the tall buildings on either side can make them quite gloomy. While that might not matter much for little-used alleys, it's certainly a factor in cities where people live and work in them. That's why researchers from Egypt's Ain Shams University are developing a new type of panel that diverts sunlight from buildings' roofs down into the alleyways beside them. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement