Advertisement

Optical Computing

Science

World's first anti-laser demonstrated

Much to the distaste of James Bond villains everywhere, scientists from Yale University recently demonstrated not a new, more powerful type of laser, but actually its opposite – the world’s first anti-laser. The device receives incoming beams of light, which interfere with one another in such a way as to cancel each other out. It could apparently have valuable applications in a number of technologies, such as optical computing and radiology.Read More

Electronics

New IBM chip technology integrates electrical and optical devices on the same piece of silicon

IBM has announced another breakthrough in its long term research goal to harness the low power consumption and incredible speed promised by optical computing. Following on from the Germanium Avalanche Photodetector – a component able to receive optical information signals at 40 Gb/sec and multiply them tenfold using a mere 1.5V supply – the company has now unveiled a new chip technology that integrates electrical and optical devices on the same piece of silicon. So how far can this technology take us? Eventually, IBM hopes, all way to the Exascale – that's one million trillion calculations per second.Read More

Science

3D molecular structures built on a surface for first time

In a milestone for nanotechnology, scientists have built three-dimensional molecular structures on a surface for the first time ever. Previously, it had only been possible to create two-dimensional structures in this way. The research team from the University of Nottingham believe that the technique will boost the development of new optical, electronic and molecular computing technologies.Read More

Electronics

All-optical transistor created

Researchers from Germany’s Max Planck Institute of Quantum Optics (MPQ) and the Swiss Ecole Polytechnique Federale de Lausanne (EPFL) have created a microresonator that produces vibrations from laser light. The device also uses one laser beam to control the intensity of another, thus making it essentially an optical transistor. The technology could have big implications in fields such as telecommunications. Read More

Science

‘Terahertz’ speed signal processor an important step for optical computing

It’s a sign of the times when the speed of electrons moving through wires is seen as pedestrian, but that’s increasingly the case as technology moves towards the new world of optical communication and computing. Optical communication systems that use the speed of light as the signal are still controlled and limited by electrical signaling at the end. But physicists have now discovered a way to use a gallium arsenide nanodevice as a signal processor at “terahertz” speeds that could help end the bottleneck.Read More

Electronics

IBM develops speed of light chip to chip communication device

Researchers at IBM have made important progress toward creating silicon circuits that communicate using pulses of light rather than electrical signals. This is thanks to a device called nanophotonic avalanche photodetector (NAP), which, as detailed on the journal Nature, is the fastest of its kind and is a major step toward achieving energy-efficient computing that will have significant implications for the future of electronics.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement