Shopping? Check out our latest product comparisons

Nuclear

Hitachi's ASTACO-SoRa robot will remove rubble from the Fukushima Daiichi nuclear plant in...

Following the 2011 earthquake and tsunami that crippled TEPCO's Fukushima Daiichi nuclear plant, the Japanese robotics industry was criticized for developing expensive walking humanoids rather than more practical robots. It seems the country won't have to rely on foreign robots to do the dirty work much longer, as Hitachi has announced a compact, dual-armed heavy duty robot that will begin removing rubble at the plant next year.  Read More

Mitsubishi Heavy Industries' MHI-MEISTeR can hold a pipe while it cuts it with a tool (Pho...

Over the past few weeks, Japan has unveiled robotic exoskeletons and quadrupeds designed to work in radioactive areas, and today Mitsubishi Heavy Industries (MHI) has revealed its own inspection and maintenance robot. The MHI-MEISTeR (Maintenance Equipment Integrated System of Telecontrol Robot) has two arms which can be equipped with various tools to remove obstacles and collect samples in areas where people cannot go.  Read More

Artists concept of spacecraft using the Los Alamos reactor

Exploring the regions of deep space beyond Mars means sending probes where solar power isn’t practical. Since the 1960s, NASA has equipped its Apollo missions and unmanned explorers with Radioisotope Thermal Generators (RTGs). These have worked very well, but they run on plutonium 238, which is currently in short supply. Therefore, the Los Alamos National Laboratory is developing a new small nuclear reactor for spacecraft that uses uranium instead of plutonium to power Stirling engines and generate electricity.  Read More

Toshiba's quadrupedal robot climbs stairs in a press demonstration (Photo: NHK)

Toshiba has unveiled a four-legged inspection robot, which will carry out work at the Fukushima Daiichi nuclear power plant, where people cannot go. The newly developed robot – simply called a Quadruped walking robot – comes equipped with a smaller wheeled robot that can be deployed to navigate hard-to-reach areas. The legged robot can negotiate stairs, uneven terrain, and is able to avoid low-lying obstacles.  Read More

Professor Yoshiyuki Sankai presents the modified HAL exoskeleton during Japan Robot Week 2...

Since the Fukushima Daiichi nuclear disaster in March 2011, the Japanese government has been testing robotics technologies to help deal with future accidents. The Hybrid Assistive Limb (HAL) exoskeleton, developed by the University of Tsukuba spin-off Cyberdyne, is being considered for first responders.  Read More

Three Sandia neutrister neutron generators mounted in a test box under vacuum

Neutron generators provide materials analysis and non-destructive testing tools to many industries, including oilfield operations, heavy mechanical construction, art conservancy, detective work, and medicine. Many of these applications have been limited by the rather large size of current industrial and medical neutron sources. Now Sandia National Laboratories, the lab that develops and supports the non-nuclear parts (including neutron generators) of nuclear weapons, has developed a new approach toward building tiny neutron generators.  Read More

A disc of highly enriched uranium from the Y-12 National Security Complex Plant

The world’s estimated reserves of uranium are only 6 million tons and with the growing demand for reliable energy free of greenhouse emissions leading to more and more nuclear plants being built, that supply may not last very long. Some estimates place the time before all the uranium is gone at between 50 and 200 years. However, the oceans of the world contain 4.5 billion tons of uranium dissolved in seawater. That’s enough to last something on the order of 6,500 years. The tricky bit is getting it out, but a team at Oak Ridge National Laboratory, Tennessee has come a step closer to economically extracting uranium from seawater with a new material that is much more efficient than previous methods.  Read More

A sapphire disk etched in platinum could preserve information for future generations to de...

Storing data for longer than a few years is tricky enough with rapidly advancing technology, so what are you supposed to do if you need to store data for thousands or even millions of years? That's just the problem facing nuclear waste management companies, who need a way to warn future civilizations of hazardous sites that will withstand the test of time. Luckily a recent proposal may have the solution with a sapphire disk etched in platinum that could survive longer than humanity itself.  Read More

These two logic gates (XOR on the right, AND on the left) are made of microscopic mechanic...

High-radiation environments are a silicon microchip's worst nightmare and even state-of-the-art radiation-shielded circuits can fry after just a couple hours of exposure. Now engineers at the University of Utah have come up with a micro-electromechanical system that could be used to build robots and computers that are impervious to such conditions and may help us deal with high bursts of space radiation, damaged nuclear power plants or even the aftermath of a nuclear attack.  Read More

Fusion power would allow electricty to be generated using the same processes taking place ...

While solar power harnesses energy produced by the Sun, fusion power seeks to harness the very process used by the Sun to generate a practically limitless supply of clean electricity. Despite decades of research and numerous breakthroughs, “net-gain” nuclear fusion is yet to appear. One of the hurdles is the so-called density, or Greenwald, limit that sees the plasmas within experimental fusion reactors (called tokamaks) spiraling apart and disrupting the fusion process. Now scientists have come up with a new theory as to why this occurs that, if proven, could provide a way to clear the density limit hurdle.  Read More

Looking for something? Search our 27,882 articles