Introducing the Gizmag Store

North Carolina State University

Scientists from North Carolina State University are working on remotely controlable sensor...

Much to the annoyance of home-owners everywhere, cockroaches are amazingly tough, and they’re able to squeeze into remarkably small spaces. These are some of the same qualities that researchers would like to see in tiny reconnaissance robots that could perform tasks such as searching earthquake-damaged buildings for survivors. Such adaptable, robust mini-robots would be quite challenging to create, however. A team of scientists from North Carolina State University are working on an alternative – sensor-equipped real cockroaches that are remotely controlled by human operators.  Read More

The prototype picoprojector, which incorporates the new polarizing technology (Photo: Imag...

Liquid crystal video projectors could be getting smaller, more energy-efficient, and less expensive. Currently, such devices require polarized light for the projection of images. Unfortunately, conventional LEDs only produce unpolarized light. While an optical filter is typically used to polarize it, the polarization process wastes over 50 percent of the original light, converting it into heat instead of allowing it to pass through. That heat, in turn, must be dissipated using a noisy, power-consuming fan. Now, however, researchers have created a new polarizing system that allows almost 90 percent of the LED light to be converted to usable, polarized light.  Read More

A team of scientists have created elastic conductors using silver nanowires, which are sai...

Earlier this year, a team led by North Carolina State University’s Dr. Yong Zhu reported success in creating elastic conductors made from carbon nanotubes. Such conductors could be used in stretchable electronics, which could in turn find use in things like bendable displays, smart fabrics, or even touch-sensitive robot skin. Now, he has made some more elastic conductors, but this time using silver nanowires – according to Zhu, they offer some big advantages over carbon nanotubes.  Read More

Using what they call the 'nanoscale sandwich' technique, researchers have created ultra-th...

We certainly hear a lot about solar cells that are able to convert larger and larger percentages of the sun’s energy into electricity. That’s all very well and good, but if those more-efficient solar cells are too expensive, they will still ultimately prove impractical for everyday use. Researchers from North Carolina State University, however, have found a way of creating “ultra-thin” solar cells that should create just as much electricity as their thicker siblings, but at a lower cost.  Read More

A student measures a skull with a digitizer, in Ann Ross' lab

For some time now – whether by using computers or clay – forensic scientists have been able to make three-dimensional reconstructions of the faces of the deceased, based on the contours of their skulls. More recently, however, software has been developed that can determine the sex and precise ancestral background of a person no longer with us, via a set of skull measurements.  Read More

Researchers at Fermilab have succeeded in demonstrating that communication via neutrino be...

Neutrinos have been in the news recently, and although it appears that they probably do not travel faster than light, they still hold court as three of the strangest of the known subatomic particles. Undeterred by these arcane particles, Fermilab scientists have succeeded in communicating with neutrino pulses through 240 meters (262 yards) of rock at a rate of 0.1 bits per second.  Read More

Using a photolithography process, scientists have created flat polymer sheets that bend th...

When the petal of a flower is being formed, its shape is achieved by cells in one area expanding more than cells in an adjacent area. This uneven expansion causes the material to buckle, creating the desired curves and creases. Scientists from the University of Massachusetts, Amherst have taken that same principle, and applied it to flat polymer gel sheets that fold themselves into three-dimensional shapes when exposed to water. Some day, such sheets could serve a number of useful purposes.  Read More

A new technique that allows CPUs and GPUs to collaborate on computing tasks has resulted i...

Want to get your computer to run faster? Well, consider its graphics processing unit (GPU) and central processing unit (CPU). The two work away at their own tasks, each one rarely helping the other shoulder its workload. Researchers from North Carolina State University, however, are in the process of changing that. They have already developed a technique that allows GPUs and CPUs located on a single chip to collaborate on tasks, and it has resulted in a processing speed increase of over 20 percent.  Read More

Scientists have developed a new method of creating elastic conductors, using buckled carbo...

Whether it’s touch-sensitive skin for robots, clothing made from smart fabrics, or devices with bendable displays, stretchable electronics will be playing a large role in a number of emerging technologies. While the field is still very new, stretchable electronic devices may have come a step closer to common use, thanks to research being conducted at North Carolina State University. Scientists there have recently developed a new method for creating elastic conductors, using carbon nanotubes.  Read More

Researchers from North Carolina State University have developed a new technique for transf...

Researchers from North Carolina State University have developed a new technique for transforming two-dimensional print output into 3-D structures, using nothing but light. A pre-stressed polymer sheet is fed into a conventional inkjet printer, which applies black stripes to areas designed to be used as hinges. The desired pattern is then cut out and subjected to infrared light. The material contracts at the hinges, and the sheet collapses into a predefined 3D structure. Dr. Michael Dickey, who co-authored a paper describing the research, says the process could be used for packaging purposes and could be applied to high-volume manufacturing.  Read More

Looking for something? Search our 26,492 articles