Advertisement

North Carolina State University

Steel is a common benchmark against which the strength of materials is measured, with "stronger than steel" a familiar catch cry for those touting the properties of some new space-age material. But now researchers at North Carolina State University have created steel that is stronger than steel using a process that increases the toughness of various metals by altering the microstructures within them. Read More
Have you ever wondered how game officials know if the football has passed the goal line, in situations where it's hidden under a pile-up of players? Well, sometimes they don't know, and they just have to hope that it isn't moved as the players get up. A team of researchers from North Carolina State University, Carnegie Mellon University and Disney Research, however, may have a solution. They're developing a method of tracking a football via low-frequency magnetic fields. Read More
At disaster sites such as building collapses, it's not uncommon to see trained dogs being used to sniff out trapped survivors, often squeezing into areas that are inaccessible by human rescue workers. Now, thanks to a new "smart" harness, such dogs may be able to play an even bigger role, by gathering and relaying vital information on their surroundings. Read More
While existing ultrasound technologies are able to identify plaque buildup on artery walls, determining when that plaque is at risk of breaking off, resulting in a heart attack or stroke, has proven a more complicated task. A team of researchers from North Carolina State University has now developed a dual-frequency ultrasound device that could help identify so-called vulnerable plaque and enable a more accurate diagnosis for at-risk patients. Read More
The increasing prevalence of bacteria resistant to antibiotic drugs is largely blamed on the over prescription and use of such drugs in humans and animals, leading to the evolution of so-called "superbugs." A new antibiotic "smart bomb" that can target specific strains of bacteria could provide the next-generation antibiotic drugs needed to stave off the threat of antibiotic-resistant bacteria. Read More
In 2012, Dr. Yong Zhu and a team at North Carolina State University created highly conductive and elastic conductors made from silver nanowires. At the time, Dr. Zhu said the conductors could be used to create stretchable electronics with applications in wearable, multifunctional sensors. Two years later, the NC State researchers have developed just such a sensor. Read More
A common strategy for treating tumors is combining two or more drugs, which has the effect of decreasing toxicity and increasing the synergistic effects between the drugs. However, the efficacy of this kind of cocktail treatment suffers when the drugs require access to different parts of the cell, a bit like fighting a battle by depositing all your archers on the same spot as your infantrymen. By making use of nanoparticle-based carriers, researchers at North Carolina State University are able to transport multiple drugs into cancerous cells optimally and precisely, in maneuvers that any field commander would be proud of. Read More
Drinking hot beverages can be a tricky business. If you don't want them becoming tepid too quickly, you have to pour them into your mug while they're still too hot. Even then, you're left with a relatively short period in which they're "just right." The designers of the Temperfect mug, however, want to change that. They claim that their mug can keep your drink at the perfect sipping temperature for hours at a time, without using any electricity. Read More
There could be hope for diabetics who are tired of giving themselves insulin injections on a daily basis. Researchers at North Carolina State University and the University of North Carolina at Chapel Hill are developing a system in which a single injection of nanoparticles could deliver insulin internally for days at a time – with a little help from pulses of ultrasound. Read More
Among the concepts put forth for decreasing the range anxiety associated with electric cars, one is to embed electrical coils within the asphalt. This would allow vehicles to wirelessly draw power from the road as they traveled, although it would also involve having to tear up existing roads to install those coils. An alternative could be on its way, however. Scientists at North Carolina State University are developing a system in which power could be transmitted from stationary roadside stations to mobile receiver coils in cars passing by. Read More
Advertisement