Advertisement

North Carolina State University

— Health & Wellbeing

Unpowered ankle exoskeleton takes a load off calf muscles to improve walking efficiency

We might have started off in the water, but humans have evolved to be extremely efficient walkers, with a walk in the park being, well, a walk in the park. Human locomotion is so efficient that many wondered whether it was possible to reduce the energy cost of walking without the use of an external energy source. Now researchers at Carnegie Mellon and North Carolina State have provided an answer in the affirmative with the development of an unpowered ankle exoskeleton. Read More
— Science

Metamaterials allow ultrasound to penetrate bone and metal

Score another point for metamaterials. Researchers at North Carolina State University have designed complementary metamaterials that will aid medical professionals and engineers in diagnosing problems under the skin. These metamaterials are structured to account for so-called "aberrating layers" that block or distort the acoustic waves used in ultrasounds, making it possible to now conduct ultrasounds of a person's head or an airplane's wing – among other things. Read More
— Science

Sound-steered cyborg cockroaches could help save human lives

If you're ever trapped in a collapsed building and are calling for help, you might want to think twice before squashing any cockroaches that wander your way – one of them might have been sent to find you. Researchers from North Carolina State University are currently laying the groundwork for such a scenario, by getting cyborg-like "biobot" cockroaches to move towards sounds. Down the road, such insects may be used to locate victims at disaster sites. Read More
— Science

Liquid metal could be used to create morphing electronics

Who could forget the scene in Terminator 2: Judgement Day where the shape-shifting T-1000 reassembles itself from thousands of blobs of molten metal? Researchers from North Carolina State University (NCSU) have taken the first steps to such science fiction becoming reality by developing a way to control the surface tension of liquid metals with the application of very low voltages. This may offer opportunities in a new field of morphing electronic circuits, self-healing electronics, or – one day – maybe even self-assembling terminator-style robots. Read More
— Science

Scientists developing remote-control cyborg moths

We've been hearing a lot about the development of tiny flying sensor-equipped robots, that could be sent into areas such as disaster sites to seek out survivors or survey the damage. However, why go to the trouble of designing those robots from scratch, when there are already ready-made insects that are about the right size? That's the thinking behind research being conducted at North Carolina State University, which is aimed at converting moths into "biobots." Read More
— Science

Paint-on "sensing skin" is designed to detect damage in concrete structures

Although concrete structures such as bridges are now often built with strain sensors embedded within them, that certainly hasn't always been the case. In order to alert authorities to cracks developing within these older structures, one solution involves attaching sensors to them. Researchers from North Carolina State University and the University of Eastern Finland are working on an alternative, however – an electrically-conductive paint-on "sensing skin." Read More
— Science

Bamboo inspires new process for making metals tougher

Steel is a common benchmark against which the strength of materials is measured, with "stronger than steel" a familiar catch cry for those touting the properties of some new space-age material. But now researchers at North Carolina State University have created steel that is stronger than steel using a process that increases the toughness of various metals by altering the microstructures within them. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement