Advertisement
more top stories »

Neuroscience


— Health and Wellbeing

UCLA researchers discover rhythmic secrets of the brain

By - October 9, 2011 2 Pictures
Neuroscientists have long pondered the mechanism behind learning and memory formation in the human brain. On the cellular level, it's generally agreed that we learn when stimuli are repeated frequently enough that our synapses - the gap-connections between neurons - respond and become stronger. Now, a team of UCLA neuro-physicists has discovered that this change in synaptic strength actually has an optimal "rhythm," or frequency, a finding that could one day lead to new strategies for treating learning disabilities. Read More
— Science

Boosting brain power with electrical stimulation

By - September 21, 2011 1 Picture
With the possible exception of those affected by hyperthylmesia – a rare condition where a person has an extraordinary capability to recall events from their past - most of us wouldn’t mind having our memory enhanced. That’s just what appears to have happened to a group of mice when targeted areas of their brains were electrically stimulated. The treatment triggered an increase in the creation of new cells in the hippocampus, with experiment results suggesting the mice’s spatial learning improved. The researchers responsible say the results could have implications for the treatment of memory disorders in humans. Read More
— Science

New technique brings computer model of the brain a step closer

By - April 14, 2011 1 Picture
"Connectomics" is an area of neuroscience that aims to map the brain's connections, known as synapses, to gain an understanding of how information flows through the circuits of the brain. With an estimated 100 billion nerve cells, or neurons, in the brain, each connected to thousands of other nerve cells, adding up to an estimated 150 trillion synapses, the creation of such a map is no small task – but a new technique is bringing scientists a step closer to developing a computer model of the brain. Read More
— Medical

Magnetic brain stimulation makes learning easier – for rats

By - January 31, 2011 2 Pictures
Transcranial magnetic stimulation (TMS) is a technology that temporarily activates – or inactivates – parts of the brain using magnetic stimulation. Its ability to selectively turn areas of the brain on or off allows the functions and interconnections of the brain to by studied in a noninvasive and painless manner. Now researchers have shown that the technology can be used to enable rats to learn more easily. While smarter rats probably aren’t high on anyone’s wish list, the technology shows potential for allowing TMS to better treat a variety of brain disorders and diseases in humans, such as severe depression and schizophrenia. Read More
— Science

New research reveals the root of musical pleasure

By - January 24, 2011 5 Pictures
We all know that certain pieces of music can evoke strong emotional responses in people. Now, a research team from Canada's McGill University has uncovered evidence that reveals exactly what causes such feelings of euphoria and ecstasy and why music is so important in human society. Using a combination of brain scanning technologies, the study has shown that the same neurotransmitter which is associated with feeling pleasure from sex and food is released in the brain when listening to good music. Read More
— Science

Fruit fly research could lead to simpler and more robust computer networks

By - January 17, 2011 2 Pictures
Over the years science has gleaned an enormous amount of knowledge from the humble fruit fly. Drosophila melanogaster was used to provide the post-Mendelian foundations for our understanding of genetics and has also been used extensively in neuroscience research. The latest fruit fly-inspired innovation could simplify how wireless sensor networks communicate and stands to have wider applications for computing. Read More
— Health and Wellbeing

Human protein may help muscular dystrophy patients

By - December 30, 2010 1 Picture
Duchenne Muscular Dystrophy is the most common and severe childhood form of muscular dystrophy (MD), affecting one in 3,500 boys. The disease progressively weakens muscles cells and tissues until muscle degradation is so severe that the patient dies, most often in their late teens or twenties. Scientists at Brown University in Providence, Rhode Island and the University of Pennsylvania, hope their research into the human protein, biglycan, will ultimately improve the condition of muscular dystrophy sufferers. Their studies have shown that biglycan significantly slows muscle damage and improves function in mice with the Duchenne genetic mutation. Human clinical trials will be the next step. Read More
— Health and Wellbeing

Jet lag shown to cause long term memory and learning problems

By - November 26, 2010 1 Picture
In bad news for regular jet-setters and shift workers, research by psychologists at the University of California, Berkeley, has shown that acute disruption of circadian rhythms can cause memory and learning problems long after people have returned to a regular schedule. While similar effects have been shown in jet-lagged subjects, the UC Berkeley study is the first to look at long-term effects and changes in brain anatomy after the subjects have recovered from jet lag. Read More
— Electronics

500 Hz remote eye tracker watches what you watch

By - November 16, 2010 2 Pictures
SensoMotoric Instruments (SMI) of Germany has launched its latest gaze and eye tracking system called the RED500. Eye tracking is a key research technique for many types of scientific, marketing, and design studies. Billed as the world’s first high-performance and high-speed remote eye tracker, the RED500 features a “scientific grade” 500 Hz sampling rate, binocular tracking, and a portable all-in-one design. Read More
— Science

New insight into the circuitry of the retina

By - November 10, 2010 2 Pictures
A better understanding of color vision has been gained in a feat of interdisciplinary and inter-institutional science. Researchers from neuroscience, nanoengineering, physics and electronics departments at universities on opposite sides of the world have come together to build a sensor that detects activity in the neural circuitry of the eye with a level of accuracy never before seen. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement