Introducing the Gizmag Store

Neuroscience

Muscle cells of untreated mice with muscular dystrophy (left) show little utrophin in cell...

Duchenne Muscular Dystrophy is the most common and severe childhood form of muscular dystrophy (MD), affecting one in 3,500 boys. The disease progressively weakens muscles cells and tissues until muscle degradation is so severe that the patient dies, most often in their late teens or twenties. Scientists at Brown University in Providence, Rhode Island and the University of Pennsylvania, hope their research into the human protein, biglycan, will ultimately improve the condition of muscular dystrophy sufferers. Their studies have shown that biglycan significantly slows muscle damage and improves function in mice with the Duchenne genetic mutation. Human clinical trials will be the next step.  Read More

As well as making you tired, jet lag can cause long term memory and learning problems (Ima...

In bad news for regular jet-setters and shift workers, research by psychologists at the University of California, Berkeley, has shown that acute disruption of circadian rhythms can cause memory and learning problems long after people have returned to a regular schedule. While similar effects have been shown in jet-lagged subjects, the UC Berkeley study is the first to look at long-term effects and changes in brain anatomy after the subjects have recovered from jet lag.  Read More

The SMI RED500 remote eye tracking system for scientific, marketing, and design studies

SensoMotoric Instruments (SMI) of Germany has launched its latest gaze and eye tracking system called the RED500. Eye tracking is a key research technique for many types of scientific, marketing, and design studies. Billed as the world’s first high-performance and high-speed remote eye tracker, the RED500 features a “scientific grade” 500 Hz sampling rate, binocular tracking, and a portable all-in-one design.  Read More

A human retina, which was the focus of the study

A better understanding of color vision has been gained in a feat of interdisciplinary and inter-institutional science. Researchers from neuroscience, nanoengineering, physics and electronics departments at universities on opposite sides of the world have come together to build a sensor that detects activity in the neural circuitry of the eye with a level of accuracy never before seen.  Read More

An unregenerated tail on an untreated tadpole (top), and a regenerated tail on one that re...

In a study that could have implications for the treatment of traumatic injuries in humans, scientists at Tufts University in Massachusetts have succeeded in getting tadpoles to regrow amputated tails. The researchers first noted that when the tails were cut off of young Xenopus laevis (African clawed frog) tadpoles, a localized increase in sodium ions occurred at the amputation site, which allowed the tail to regenerate – something which tadpoles lose the ability to do as they mature. However, after an hour of treatment with a drug cocktail that triggered an influx of sodium ions into injured cells, older tadpoles were also able to regenerate their tails. Given that tadpole tails contain spinal cord, muscle, nerves and other materials, it’s possible that the process might someday be able to regenerate the spinal cords, or even limbs, of people.  Read More

The next generation of robotic pets may detect a person's emotions and respond accordingly...

Sony’s Aibo may be discontinued, but robotic pets of all shapes and sizes continue to stake a claim in the hearts of people around the world. Despite the apparent intelligence of some of these robot pets, their behavior and actions are usually nothing more than pre-programmed responses to stimuli – being patted in a particular location or responding to a voice command, for example. Real flesh and blood pets are much more complex in this regard, even discerning and responding to a person’s emotional state. Robotic pets could be headed in that direction, with researchers in Taiwan turning to neural networks to help them break the cycle of repetitive behavior in robot toys and endow them with almost emotional responses to interactions.  Read More

Deep dissection of brain-stem with the corticospinal tract visible in red

According to the Christopher & Dana Reeve Foundation, about two percent of Americans – more than six million people – have some form of paralysis resulting from spinal cord injury, which is due primarily to the interruption of connections between the brain and spinal cord. Such paralysis and loss of function has long been considered untreatable, but a new approach has, for the first time, induced robust regeneration of nerve connections that control voluntary movement, showing the potential for new therapeutic approaches to paralysis and other motor function impairments and offering hope to sufferers.  Read More

First retina created from stem cells could help millions

In another world first in the fight against degenerative eye disorders, scientists from the Universtiy of California, Irvine, have created an eight-layer early-stage retina from human embryonic stem cells. Not only is this the world's first three-dimensional complex tissue structure to be made from stem cells, but it also marks the first step toward the development of transplant-ready retinas to treat eye disorders affecting millions.  Read More

China a rising star in regenerative medicine

Chinese researchers have become the world's fifth most prolific contributors to peer-reviewed scientific literature on clock-reversing regenerative medicine even as a skeptical international research community condemns the practice of Chinese clinics administering unproven stem cell therapies to domestic and foreign patients. According to a study by the Canadian-based McLaughlin-Rotman Centre for Global Health (MRC), published this week by the UK journal Regenerative Medicine, China's government is pouring dollars generously into regenerative medicine (RM) research and aggressively recruiting high-caliber scientists trained abroad in pursuit of its ambition to become a world leader in the field.  Read More

It doesn't seem to matter how the diet is restricted - whether fats, proteins or carbohydr...

Researchers at Mount Sinai School of Medicine have unraveled a molecular puzzle to reveal why a lower-calorie diet slows the development of some age-related conditions such as Alzheimer’s disease, as well as the aging process itself. In their search for an answer they discovered that it doesn’t seem to matter how the diet is restricted – whether fats, proteins or carbohydrates are cut – to produce protective effects against aging and disease.  Read More

Looking for something? Search our 26,500 articles