Some day, meshes made from nanowires could be used in devices such as video displays, LEDs, thin-film solar cells, and touch-screens. According to research performed so far, such meshes would be very electrically conductive, cost-effective, and easy to process. What has proven challenging, however, is finding a way of getting the criss-crossed nanowires to fuse together to form that mesh – if pressed or heated, the wires can be damaged. Now, engineers from Stanford University may have found the answer ... just apply light. Read More
Research scientist Andreas Mershin has a dream to bring inexpensive solar power to the masses, especially those in developing countries. After years of research, he and his team at MIT's Center for Bits and Atoms, along with University of Tennessee biochemist Barry Bruce, have worked out a process that extracts functional photosynthetic molecules from common yard and agricultural waste. If all goes well, in a few years it should be possible to gather up a pile of grass clippings, mix it with a blend of cheap chemicals, paint it on your roof and begin producing electricity. Talk about redefining green power plants! Read More
Starting next year, computers will be available with three-dimensional transistors – these will incorporate vertical components, unlike the flat chips that we’re used to seeing. This structure will allow them to have shorter gates, which are the components that allow the transistors to switch the electrical current on and off, and to direct its flow. The shorter the gate, the faster the computer can operate. While the new 3D transistors will have a gate length of 22 nanometers, as opposed to the present length of about 45, the use of silicon as a construction material limits how much shorter they could ultimately get. That’s why scientists from Purdue and Harvard universities have created prototype 3D transistors made out of indium-gallium-arsenide – the same compound recently used in a record-breaking solar cell. Read More
Around the world, scientists have been working on ways of replacing the heart tissue that dies when a heart attack occurs. These efforts have resulted in heart "patches" that are made from actual cardiomyocytes (heart muscle cells), or that encourage surrounding heart cells to grow into them. One problem with some such patches, however, lies in the fact that that they consist of cardiomyocytes set within a scaffolding of poorly-conductive materials. This means that they are insulated from the electrical signals sent out by the heart, so they don't expand and contract as the heart beats. Scientists at MIT, however, may be on the way to a solution. Read More
In June of last year we reported on the success by researchers at Duke University in developing a technique capable of producing copper nanowires at a scale that could make them a potential replacement for rare and expensive indium tin oxide (ITO) in touch screens and solar panels. However, the water-based production process resulted in the copper nanowires clumping, which reduced their transparency and prevented the copper from oxidizing, which decreases their conductivity. The researchers have now solved the clumping problem and say that copper nanowires could be appearing in cheaper touch screens, solar cells and flexible electronics in the next few years. Read More
Although ultraviolet semiconductor diode lasers are widely used in data processing, information storage and biology, their applications have been limited by the lasers’ size, cost and power. Now researchers at the University of California, Riverside Bourns College of Engineering have overcome these problems by developing a new semiconductor nanowire laser technology that could be used to provide denser optical disc storage, superfast data processing and transmission and even to change the function of a living cell. Read More
For the past several years, scientists from around the world have been engaged in the development of nanogenerators – tiny piezoelectric devices capable of generating electricity by harnessing minute naturally-occurring movements, such as the shifting of clothing or even the beating of a person's heart. So far, while they may have worked in principle, few if any of the devices have been able to generate enough of a current to make them practical for use in consumer products. Now, however, scientists from the Georgia Institute of Technology are claiming to have created "the world's first practical nanogenerator." Read More
Stretchability is not something you'd think of as synonymous with electronics. For this very reason the realm of wearable electronic devices has been limited to devices on clothes with rigid or at best semi-flexible circuit boards or solar panels and watches that can do just about everything except make a decent espresso. The game is about to change with the introduction of a silicon nanowire with elastic properties that could enable the incorporation of stretchable electronic devices into clothing, implantable health-monitoring devices, and a host of other applications. Read More
Racetrack memory is an experimental form of memory that looks to combine the best attributes of magnetic hard disk drives (low cost) and solid state memory (speed) to enable devices to store much more information, while using much less energy than current memory technologies. Researchers at IBM have been working on the development of Racetrack memory for six years and have now announced the discovery of a previously unknown aspect of key physics inside the new technology that brings it another step closer to becoming a reality. Read More
Until now, the common practice for manipulating the electron spin of quantum bits, or qubits, – the building blocks of future super-fast quantum computers – has been through the use of magnetic fields. Unfortunately, these magnetic fields are extremely difficult to generate on a chip, but now Dutch scientists have found a way to manipulate qubits with electrical rather than magnetic fields. The development marks yet another an important development in the quest for future quantum computers, which would far outstrip current computers in terms of speed. Read More