Introducing the Gizmag Store

Nanowires

Scientists from the Georgia Institute of Technology are claiming to have created the world...

For the past several years, scientists from around the world have been engaged in the development of nanogenerators – tiny piezoelectric devices capable of generating electricity by harnessing minute naturally-occurring movements, such as the shifting of clothing or even the beating of a person's heart. So far, while they may have worked in principle, few if any of the devices have been able to generate enough of a current to make them practical for use in consumer products. Now, however, scientists from the Georgia Institute of Technology are claiming to have created "the world's first practical nanogenerator."  Read More

The first coils of silicon nanowire on a substrate that can be stretched to more than doub...

Stretchability is not something you'd think of as synonymous with electronics. For this very reason the realm of wearable electronic devices has been limited to devices on clothes with rigid or at best semi-flexible circuit boards or solar panels and watches that can do just about everything except make a decent espresso. The game is about to change with the introduction of a silicon nanowire with elastic properties that could enable the incorporation of stretchable electronic devices into clothing, implantable health-monitoring devices, and a host of other applications.  Read More

IBM researchers now have an unprecedented understanding and control over the magnetic move...

Racetrack memory is an experimental form of memory that looks to combine the best attributes of magnetic hard disk drives (low cost) and solid state memory (speed) to enable devices to store much more information, while using much less energy than current memory technologies. Researchers at IBM have been working on the development of Racetrack memory for six years and have now announced the discovery of a previously unknown aspect of key physics inside the new technology that brings it another step closer to becoming a reality.  Read More

Scanning electron image of the nanowire device with gate electrodes used to electrically c...

Until now, the common practice for manipulating the electron spin of quantum bits, or qubits, – the building blocks of future super-fast quantum computers – has been through the use of magnetic fields. Unfortunately, these magnetic fields are extremely difficult to generate on a chip, but now Dutch scientists have found a way to manipulate qubits with electrical rather than magnetic fields. The development marks yet another an important development in the quest for future quantum computers, which would far outstrip current computers in terms of speed.  Read More

Formerly unobserved increase in length and twist of the anode in a nanobattery (Image: DOE...

Because battery technology hasn’t developed as quickly as the electronic devices they power, a greater and greater percentage of the volume of these devices is taken up by the batteries needed to keep them running. Now a team of researchers working at the Center for Integrated Nanotechnologies (CINT) is claiming to have created the world’s smallest battery, and although the tiny battery won’t be powering next year’s mobile phones, it has already provided insights into how batteries work and should enable the development of smaller and more efficient batteries in the future.  Read More

A diagram of nanowires used in a Racetrack memory chip

Tired of waiting for your computer to boot up? Within five to seven years, you may no longer have to. That’s the estimated amount of time it will take to bring Racetrack Memory to market. Racetrack is a proposed new shock-proof system that is said to be 100,000 times faster than current hard drives, while also being 300 times more energy-efficient. Although it incorporates cutting-edge nanotechnology, it’s based on the same principles as the humble VHS videotape.  Read More

Dr. Heike Riel, who leads the nanoscale electronics group at IBM Research-Zurich, is part ...

It has been estimated that in the European Union, about ten percent of the electricity used in homes and offices goes to power computers and other electronic devices that are in standby mode. By 2020, that amount could constitute 49 terawatt hours per year, which is almost equivalent to the combined annual electrical consumption of Austria, the Czech Republic and Portugal. The European Union’s just-announced Steeper research initiative squarely addresses such concerns. Its aim is to develop electronics that operate on less than half a volt when in standby, and that are up to ten times more energy-efficient when active.  Read More

The filter being treated with silver and CNTs (B,C), and SEM images of the cotton, silver ...

Yi Cui, an Assistant Professor of Material Science and Engineering at Stanford University, has invented quite the water filter. It’s inexpensive, is very resistant to clogging, and uses much less electricity than systems that require the water to be pumped through them. It also kills bacteria, as opposed to just trapping them, which is all that many existing systems do.  Read More

Transmission electron microscope image of nano LEDs emitting light (all images courtesy ...

Chemists at the National Institute of Standards and Technology (NIST) have stumbled upon a way of producing light from nanowires. While they were refining a method for producing horizontally-grown wires across a substrate, Babak Nikoobakht and Andrew Herzing electrically charged an array of junctions between two materials and caused illumination to occur. The pair hope to further refine the technique so that these nano LEDs can be applied in the development of light sources and detectors useful in photonic devices or lab-on-a-chip platforms.  Read More

Harnessing sound energy from conversations could one day help recharge mobile phones ((Ima...

In the search for alternative energy sources there's one form of energy you don't hear much about, which is ironic because I'm referring to sound energy. Sound energy is the energy produced by sound vibrations as they travel through a specific medium. Speakers use electricity to generate sound waves and now scientists from Korea have used zinc oxide, the main ingredient of calamine lotion, to do the reverse – convert sound waves into electricity. They hope ultimately the technology could be used to convert ambient noise to power a mobile phone or generate energy for the national grid from rush hour traffic.  Read More

Looking for something? Search our 26,566 articles