Introducing the Gizmag Store

Nanotubes

MIT has developed pencil 'leads' that can be used to draw gas sensors onto paper

We’ve already seen a pen with silver-based ink, that lets its user draw electrical circuits on ordinary paper. Now, scientists from MIT have brought similar “hands on” technology to the humble pencil – they’ve compressed carbon nanotubes together to form a pencil lead substitute, that has been used to draw gas sensors onto regular paper imprinted with gold electrodes.  Read More

Research headed by professor Nosang Myung at Bourns College of Engineering, UCR has result...

Research headed by professor Nosang Myung at Bourns College of Engineering, University of California, Riverside (UCR), has resulted in the development of a prototype "electronic nose." The work brings to mind previous "electronic noses" that we reported on back in 2010, but rather than discovering forms of cancer, Myung's prototype is designed to detect harmful airborne agents, such as pesticides, bio-terrorism, gas leaks and other unwanted presences - with clear applications in military, industry and agricultural areas.  Read More

Thomas Edison with his nickel-iron rechargeable battery in 1910 (Photo: Smithsonian)

A green, rechargeable battery that is suitable for powering electric vehicles and stationary power storage applications, and that would survive tens of thousands of charge cycles in a useful life of 100 years without loss of capacity. What could be a better innovation for our times? Such a battery has been developed, and recently improved by Stanford researchers. Oh, one other thing. The battery was invented by Thomas Edison in 1901.  Read More

An atomic-force microscope image of a layer of single-walled carbon nanotubes deposited on...

Researchers at MIT have developed a new type of photovoltaic cell made with carbon nanotubes that captures solar energy in the near-infrared region of the spectrum, which conventional silicon solar cells don’t. The new design means solar cell efficiency could be greatly increased, boosting the chances to make solar power a more popular source of energy.  Read More

A nanotube-infused paint invented at Rice University allows strain to be read using a near...

While wireless sensors for detecting the strain placed on bridges and buildings, such as the SenSpot, are easier and cheaper to install than embedded wired networks of sensors, they still need to be in physical contact with the structure being monitored. Researchers at Rice University have now developed a new type of paint, infused with carbon nanotubes, that could make strain detection of materials in buildings, bridges and aircraft possible without actually touching the material.  Read More

This drawing shows a double-walled carbon nanotube. Each tube is made of a rolled-up sheet...

Stanford researchers have found that concentric carbon nanotubes, with the outer layer riddled by defects and impurities, could be a cheap alternative for some of the platinum catalysts that convert hydrogen and oxygen into water in fuel cells and metal-air batteries.  Read More

Artist's impression showing conductive supramolecular fibers trapped between two gold elec...

French researchers have produced highly conducive plastic fibers with a thickness of only a few nanometers that self-assemble when exposed to a flash of light. The tiny fibers (one nanometer equals one billionth of a meter) could become a cheaper and easier-to-handle alternative to carbon nanotubes and play a role in the development of electronic components on the nanoscale.  Read More

This carbon nanotube sponge can hold more than 100 times its weight in oil, which can be s...

Last week we looked at the development of “hydrate-phobic” surfaces that could assist in the containment of oil leaks in deep water. Now, by adding boron to carbon while growing nanotubes, researchers have developed a nanosponge with the ability to absorb oil spilled in water. Remarkably, the material is able to achieve this feat repeatedly and is also electrically conductive and can be manipulated with magnets.  Read More

A researcher from Adelaide's Flinders University has developed a prototype solar cell that...

Imagine if every window of the 828-meter (2,717-foot) high Burj Khalifa in Dubai was capable of generating electricity just like a PV panel. That's the promise of solar window technology like the RSi and Sphelar cells systems. Rather than using costly silicon for window-based collection of solar energy, Dr Mark Bissett proposes using a very thin layer of carbon nanotubes instead.  Read More

A NASA artist's rendition of a space elevator (Image: NASA)

A Japanese company is looking to take elevators to new heights. The Daily Yomiuri reports that Tokyo-based construction company Obayashi Corp. hopes to have a space elevator operational by 2050, carrying passengers and cargo in a vehicle that travels along a ribbon made of carbon nanotubes extending a quarter of the way to the moon.  Read More

Looking for something? Search our 26,501 articles