2014 Paris Motor Show highlights

Nanotubes

A hybrid nanomaterial synthesized by combining copper sulfide nanoparticles and SWNTs can ...

We’ve seen nanomaterials that can be used to convert light into electricity and others that can convert heat into electricity. Now researchers from the University of Texas at Arlington and Louisana Tech University have created a hybrid nanomaterial that can do both. By pairing the material with microchips, the researchers say it could be used in self-powered sensors, low-power electronic devices, and biomedical implants.  Read More

The all-carbon solar cell consists of a photoactive layer, made of carbon nanotubes and bu...

Researchers at Stanford University have developed an experimental solar cell made entirely of carbon. In addition to providing a promising alternative to the increasingly expensive materials used in traditional solar cells, the thin film prototype is made of carbon materials that can be coated onto surfaces from a solution, cutting manufacturing costs and offering the potential for coating flexible solar cells onto buildings and car windows.  Read More

IBM researcher Hongsik Park examines a wafer packed with carbon nanotubes

Silicon’s reign as the standard material for microchip semiconductors may be coming to an end. Using standard semiconductor processes, scientists from IBM Research have succeeded in precisely placing over 10,000 working transistors made from carbon nanotubes onto a wafer surface – and yes, the resulting chip was tested, and it worked. According to IBM, “These carbon devices are poised to replace and outperform silicon technology allowing further miniaturization of computing components and leading the way for future microelectronics.”  Read More

The ribbon-like material being wound onto a spool, while being sprayed with polymer and st...

When people need a material that’s strong yet lightweight, they usually look to carbon fiber. In the near future, however, they may instead choose to go with composite materials made from stretched carbon nanotubes. These materials could theoretically offer the same strength as carbon fiber at one-tenth the weight, or the same weight at ten times the strength. Researchers from North Carolina State University have recently succeeded in creating such a composite.  Read More

MIT has developed pencil 'leads' that can be used to draw gas sensors onto paper

We’ve already seen a pen with silver-based ink, that lets its user draw electrical circuits on ordinary paper. Now, scientists from MIT have brought similar “hands on” technology to the humble pencil – they’ve compressed carbon nanotubes together to form a pencil lead substitute, that has been used to draw gas sensors onto regular paper imprinted with gold electrodes.  Read More

Research headed by professor Nosang Myung at Bourns College of Engineering, UCR has result...

Research headed by professor Nosang Myung at Bourns College of Engineering, University of California, Riverside (UCR), has resulted in the development of a prototype "electronic nose." The work brings to mind previous "electronic noses" that we reported on back in 2010, but rather than discovering forms of cancer, Myung's prototype is designed to detect harmful airborne agents, such as pesticides, bio-terrorism, gas leaks and other unwanted presences - with clear applications in military, industry and agricultural areas.  Read More

Thomas Edison with his nickel-iron rechargeable battery in 1910 (Photo: Smithsonian)

A green, rechargeable battery that is suitable for powering electric vehicles and stationary power storage applications, and that would survive tens of thousands of charge cycles in a useful life of 100 years without loss of capacity. What could be a better innovation for our times? Such a battery has been developed, and recently improved by Stanford researchers. Oh, one other thing. The battery was invented by Thomas Edison in 1901.  Read More

An atomic-force microscope image of a layer of single-walled carbon nanotubes deposited on...

Researchers at MIT have developed a new type of photovoltaic cell made with carbon nanotubes that captures solar energy in the near-infrared region of the spectrum, which conventional silicon solar cells don’t. The new design means solar cell efficiency could be greatly increased, boosting the chances to make solar power a more popular source of energy.  Read More

A nanotube-infused paint invented at Rice University allows strain to be read using a near...

While wireless sensors for detecting the strain placed on bridges and buildings, such as the SenSpot, are easier and cheaper to install than embedded wired networks of sensors, they still need to be in physical contact with the structure being monitored. Researchers at Rice University have now developed a new type of paint, infused with carbon nanotubes, that could make strain detection of materials in buildings, bridges and aircraft possible without actually touching the material.  Read More

This drawing shows a double-walled carbon nanotube. Each tube is made of a rolled-up sheet...

Stanford researchers have found that concentric carbon nanotubes, with the outer layer riddled by defects and impurities, could be a cheap alternative for some of the platinum catalysts that convert hydrogen and oxygen into water in fuel cells and metal-air batteries.  Read More

Looking for something? Search our 28,963 articles