Shopping? Check out our latest product comparisons

Nanotechnology

A new nanosensor developed by Fraunhofer researchers could reduce the number of lab experi...

Animal testing is an area that elicits strong feelings on both sides of the argument for and against the practice. Supporters like the British Royal Society argue that virtually every medical breakthrough of the 20th century involved the use of animals in some way, while opponents say that it is not only cruel, but actually impedes medical progress by using misleading animal models. Whatever side of the argument researchers fall on, most would likely use an alternative to animal testing if it existed. And an alternative that reduces the need for animal testing is just what Fraunhofer researchers hope their new sensor nanoparticles will be.  Read More

Researchers have created silicon wire four atoms wide and one atom tall capable of carryin...

The world's narrowest silicon wires with a cross section of a mere four atoms by one atom have been created by a team of developers from the University of New South Wales, the University of Melbourne and Purdue University. The wires are fully functioning, with current-carrying capacity equivalent to that of a microprocessor's copper cable, despite being 20 times thinner - and 10,000 times narrower than a human hair.  Read More

2011 - a year in technology

We cast a wide net over all types of new and emerging technologies here at Gizmag.com - some save us time, some keep us connected, some help us stay healthy and some are just plain fun, but at the core of what we cover are those discoveries and innovations which have the potential to impact the fortunes of the human race as a whole and make a difference to the future of our planet. So with the calender having rolled over into another year, it's an ideal time to take a look back at some of the most significant and far-reaching breakthroughs that we saw during 2011.  Read More

Hematite nanoparticle film (red) with functional phycocyanin network (green) attached

Recently, scientists from the Swiss research institute EMPA, along with colleagues from the University of Basel and the Argonne National Laboratory in Illinois took a cue from photosynthesis and discovered that by coupling a light-harvesting plant protein with their specially designed electrode, they could substantially boost the efficiency of photo-electrochemical cells used to split water and produce hydrogen - a huge step forward in the search for clean, truly green power.  Read More

Mixtures using cadmium sulfide produced yellow paint, cadmium selenide produced dark brown...

A team of researchers from the University of Notre Dame in Indiana is reporting the creation of a "solar paint" that could mark an important milestone on the road to widespread implementation of renewable energy technology. Although the new material is still a long way off the conversion efficiencies of commercial silicon solar cells, the researchers say it is cheap to make and can be produced in large quantities.  Read More

Scientists have created one of the smallest electronic circuits ever, and it has led to a ...

A team of scientists from Montreal’s McGill University have successfully formed a circuit between two wires which were separated by a gap of only 15 nanometers – that’s about the width of 150 atoms. It is reportedly “the first time that anyone has studied how the wires in an electronic circuit interact with one another when packed so tightly together.” Along with being one of the smallest electronic circuits ever created, it has also led to a discovery that may have big implications for the world of computing.  Read More

The graphene foam is macroscopic in total size (left), yet has nanoscopic internal structu...

For some time now, scientists have known that certain nanostructures are very sensitive to the presence of various chemicals and gases, making them good candidates for use in explosives-detecting devices. Unfortunately, because they're so small, mounting a single nanostructure within such a device would be an extremely fiddly and costly process. They would also be quite fragile, plus it would be difficult to clean the detected gas from them, so they could be reused. Recently, however, scientists from New York's Rensselaer Polytechnic Institute have figured out a solution to those problems. They have created a postage stamp-sized piece of foam made from one continuous piece of graphene, that is easy to manipulate, flexible, rugged, simple to neutralize after each use ... and is ten times more sensitive than traditional polymer sensors.  Read More

Scientists from Tel Aviv University are creating what could be much more efficient solar p...

Radio waves are a type of electromagnetic energy, and when they’re picked up by traditional metallic antennas, the electrons that are generated can be converted into an electrical current. Given that optical waves are also a type of electromagnetic energy, a team of scientists from Tel Aviv University wondered if these could also be converted into electricity, via an antenna. It turns out that they can – if the antenna is very, very short. These “nanoantennas” could replace the silicon semiconductors in special solar panels, which could harvest more energy from a wider spectrum of sunlight than is currently possible.  Read More

Scientists have created an 'electric car' that is only a few nanometers long (Image: Empa)...

We’ve seen some fairly small electric cars in recent years, such as those made by Tango, Think, Wheego, and of course, smart. All of those automobiles are absolute monsters, however, compared to what scientists from Swiss research group Empa have created. Working with colleagues at the Netherlands’ University of Groningen, they’ve built a one-of-a-kind electric car that measures approximately 4 x 2 nanometers.  Read More

The new super-black coating made from hollow carbon nanotubes prevents reflection because ...

When it comes to gathering measurements of objects so distant in the universe that they can no longer be seen in visible light, the smallest amount of stray light can play havoc with the sensitive detectors and other instrument components used by astronomers. Currently, instrument developers use black paint on baffles and other components to help prevent stray light ricocheting off surfaces, but the paint absorbs only 90 percent of the light that strikes it. NASA engineers have now developed a nanotech-based coating that absorbs on average more than 99 percent of the ultraviolet, visible, infrared, and far-infrared light that hits it, making it promising for a variety of space- and Earth-bound applications.  Read More

Looking for something? Search our 27,903 articles