Advertisement
more top stories »

Nanotechnology


— Health and Wellbeing

New cavity-filling materials kill bacteria and regrow tooth tissue

When a dentist drills out the decayed section of a tooth that has a cavity, it’s important that they also remove the bacteria that caused the decay in the first place – or at least, that they remove as much of it as possible. If they don’t, the bacteria can get reestablished, causing the filling to fail. Now, scientists from the University of Maryland’s School of Dentistry have developed a new cavity-filling system that they say will not only kill virtually all residual bacteria, but also help the tooth to regrow some of the tissue that was lost to decay. Read More
— Medical

New concept could lead to low-cost DNA sequencing in everyday clinical practices

Doctors and scientists wishing to decode a human genome can now do so in a day for US$1,000 a pop using the recently-released Ion Proton sequencer. With a price tag of $149,000, though, the machine isn’t cheap – nor is it the be-all and end-all of desktop gene sequencing. For one thing, the tiny $900 MinION sequencer should be available soon. Also, a team of scientists from Oak Ridge National Laboratory and Yale University have now developed a concept of their own, which could end up providing an even less expensive high-speed sequencer. Read More
— Electronics

Engineers produce multiple colors of lasers using a single material

Ordinarily, if you wanted to include blue, green and red laser light sources in the same device (such as a BluRay player), you would need to build in three separate lasers – each one incorporating different semiconductor materials. Now, however, engineers from Rhode Island’s Brown University have succeeded in creating different colors of lasers, all using the same nanocrystal-based semiconductor. Among other things, this opens the door to digital displays that could produce various colors of laser light simultaneously. Read More

Mini-lab promises affordable on-site DNA-based testing

A genetic testing mini-lab developed by researchers at the University of Alberta to set to begin commercial trials within a year. The Domino system provides a portable, cheap and powerful alternative to conventional laboratories that delivers a range of point-of-care diagnostic possibilities including tests for blood borne diseases such as malaria and those affecting farm animals. Read More
— Good Thinking

Non-glare nanotextured multifunctional glass repels water and dust

Glass has a unique look - despite its clarity you can tell there is a material there by the way it reflects light, and that it isn't plastic or crystal. Glass, however, carries problems, like glare, fogging, and collects dirt. A group of MIT researchers has found a new way to create arrays of conical micron-scale surface nanotextures to produce glass that is self-cleaning, non-glare, and non-fogging. The researchers believe the nanotextured surface can be made at low enough cost to be applied to optical devices, the screens of smartphones and televisions, solar panels, car windshields and even windows in buildings. Read More
— Environment

Cheap, stable, printable liquid solar cells developed

Scientists at the University of Southern California (USC) have developed technology to cheaply produce stable liquid solar cells that can be painted or printed onto clear surfaces. The technology relies on solar nanocrystals that are around four nanometers in size - meaning you could fit more than 250 billion on the head of a pin. Their size allows them to be suspended in a liquid solution so they could be printed like a newspaper. The downside, commercialization of this technology is still years away. Read More
— Science

Nanocrystal-coated fibers show promise for harvesting waste heat

Researchers at Purdue University in the U.S. have developed a new method of harvesting vast amounts of energy from waste heat. Using glass fibers dipped in a solution containing nanocrystals of lead telluride, the team led by Dr. Yue Wu is engineering a highly flexible thermoelectric system that generates electricity by gathering heat from water pipes and engine components. Read More
— Health and Wellbeing

Nanocoating designed to keep hip implants where they belong

Probably the simplest way to describe an artificial hip would be to say that it’s a ball attached to a stem. The stem is often fastened to the open end of the femur using a glass-like polymer known as bone cement, while the ball takes the place of the original hip bone’s ball joint, rotating within a corresponding implant in the socket of the pelvis. Although problems can occur at that ball-and-socket interface, they can also result when the bone cement cracks, causing the stem to detach from the femur. Scientists at MIT, however, have developed a new type of nanoscale film coating, designed to keep that from happening. Read More
— Electronics

Self-assembling plastic nanofibers present cheaper alternative to carbon nanotubes

French researchers have produced highly conducive plastic fibers with a thickness of only a few nanometers that self-assemble when exposed to a flash of light. The tiny fibers (one nanometer equals one billionth of a meter) could become a cheaper and easier-to-handle alternative to carbon nanotubes and play a role in the development of electronic components on the nanoscale. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement