Decision time? Check out our latest product comparisons

Nanotechnology

UB researchers have studied the effects of quantum dots in primates - the clusters seen he...

Nanomedicine is a hugely promising field, but while remarkable new treatments and diagnostic tests are being developed, questions remain about the long term effects of nanoparticles on our bodies. Adding to our understanding of these issues, researchers have now reported that the use of quantum dots - tiny luminescent crystals that can be used to monitor disease at a cellular level - appears to be safe in primates over a one-year period.  Read More

Researchers are working on a vacuum channel transistor that can combines the best traits o...

Most people associate vacuum tubes with a time when a single computer took up several rooms and "debugging" meant removing the insects stuck in the valves, but this technology may be in for a resurgence with news that researchers at NASA and the National Nanofab Center in South Korea are working on a miniaturized "vacuum channel transistor" - a best-of-both-worlds device that could find application in space and high-radiation environments.  Read More

Scientists at the Lawrence Berkeley National Laboratory have developed a means of converti...

Scientists at the Lawrence Berkeley National Laboratory have developed a means of converting mechanical energy into electrical energy using a harmless, specially engineered virus. By simply tapping a finger on a virus-coated electrode the size of a postage stamp, the scientists were able to produce enough current to drive a liquid crystal display, albeit a very small one. The scientists claim that this is the first time that the piezoelectrical properties of a biological material have been harnessed.  Read More

A drop of liquid sits on the textured silicon surface that has arced rungs to guide the dr...

Lately we’re hearing more and more about tiny medical and environmental diagnostic devices, that can perform a variety of tests using very small fluid samples. Working with such small samples does present a challenge, however – how do you thoroughly mix tiny amounts of different fluids, or wrangle individual drops for analysis? According to a team of scientists from the University of Washington, the answer lies in the lotus leaf.  Read More

Newly-developed cavity-filling substances could lead to fillings that last much longer

When a dentist drills out the decayed section of a tooth that has a cavity, it’s important that they also remove the bacteria that caused the decay in the first place – or at least, that they remove as much of it as possible. If they don’t, the bacteria can get reestablished, causing the filling to fail. Now, scientists from the University of Maryland’s School of Dentistry have developed a new cavity-filling system that they say will not only kill virtually all residual bacteria, but also help the tooth to regrow some of the tissue that was lost to decay.  Read More

Scientists have created nanoscale submarines, for use in gathering up oil droplets in the ...

If anything good came out of the 2010 Gulf of Mexico oil spill, it was that it got people thinking about technologies for cleaning up future spills. While things like magnetic soap, nanosponges, and autonomous robots are all in the works, a group of scientists recently announced the results of their research into another possibility – oil droplet-gathering microsubmarines.  Read More

Scientists have developed a new concept for a low-cost, high-speed desktop DNA sequencer (...

Doctors and scientists wishing to decode a human genome can now do so in a day for US$1,000 a pop using the recently-released Ion Proton sequencer. With a price tag of $149,000, though, the machine isn’t cheap – nor is it the be-all and end-all of desktop gene sequencing. For one thing, the tiny $900 MinION sequencer should be available soon. Also, a team of scientists from Oak Ridge National Laboratory and Yale University have now developed a concept of their own, which could end up providing an even less expensive high-speed sequencer.  Read More

Cuong Dang manipulates a green beam that pumps Brown University's new nanocrystals with en...

Ordinarily, if you wanted to include blue, green and red laser light sources in the same device (such as a BluRay player), you would need to build in three separate lasers – each one incorporating different semiconductor materials. Now, however, engineers from Rhode Island’s Brown University have succeeded in creating different colors of lasers, all using the same nanocrystal-based semiconductor. Among other things, this opens the door to digital displays that could produce various colors of laser light simultaneously.  Read More

The thumb-sized Domino chip can perform 20 genetic tests from a drop of blood

A genetic testing mini-lab developed by researchers at the University of Alberta to set to begin commercial trials within a year. The Domino system provides a portable, cheap and powerful alternative to conventional laboratories that delivers a range of point-of-care diagnostic possibilities including tests for blood borne diseases such as malaria and those affecting farm animals.  Read More

A scanning electron micrograph of a cross-section of the MIT nanotextured glass (Photo: Hy...

Glass has a unique look - despite its clarity you can tell there is a material there by the way it reflects light, and that it isn't plastic or crystal. Glass, however, carries problems, like glare, fogging, and collects dirt. A group of MIT researchers has found a new way to create arrays of conical micron-scale surface nanotextures to produce glass that is self-cleaning, non-glare, and non-fogging. The researchers believe the nanotextured surface can be made at low enough cost to be applied to optical devices, the screens of smartphones and televisions, solar panels, car windshields and even windows in buildings.  Read More

Looking for something? Search our 29,152 articles