Decision time? Check out our latest product comparisons

Nanotechnology

The new infection-indicating dressing on a healthy skin sample (R) and on an infected skin...

Serious burns can lead to infection and potentially fatal toxic shock syndrome (TSS). Once an infection sets in, it is vital to begin treatment quickly to avoid or minimize a transition to TSS. The problem is, removing dressings to check for infection can be painful, slow the healing process and increase the chance of scarring. A prototype dressing developed by chemists at the University of Bath in the UK alerts doctors to the first signs of infection by glowing under ultraviolet (UV) light.  Read More

Inspired by moths' eyes, scientists have created new technology that may help improve the ...

Because moths need to use every little bit of light available in order to see in the dark, their eyes are highly non-reflective. This quality has been copied in a film that can be applied to solar cells, which helps keep sunlight from being reflecting off of them before it can be utilized. Now, a new moth eye-inspired film may further help solar cells become more efficient.  Read More

Scientists at Georgia Tech have crafted a new type of touch-reactive material that's sensi...

For years now, scientists across the globe have strived to find a method that gives robots an accurate sense of touch, and with good reason. A robot with an improved ability to feel would be better equipped to identify objects, judge its movements with greater care, and perform more tasks overall. In the latest step towards that goal, researchers at Georgia Tech have crafted a new type of touch-reactive material that's sensitive enough to read fingerprints and could provide robots with a sense of touch that resembles our own.  Read More

The movements of a fruit fly larva were observed under scanning electron microscope (Image...

Whether you're a researcher wishing to study living insects in conditions requiring a lethal vacuum, or you're that insect in the vacuum simply wishing not to die, scientists have found a solution to your problem. Using only a common chemical and a scanning electron microscope (SEM), a team at the Hamamatsu University School of Medicine developed a process that allows insects to survive in a vacuum of about a millionth of atmospheric pressure. Not just a new technique in biologists' toolkit, this research adds a small piece to our understanding of how life – insect, human, or otherwise – might be sustained outside the narrow constraints our bodies demand.  Read More

A rendering of the nanosponges attracting bloodstream-borne toxins

If you’ve seen many old westerns, then you’ll likely have watched a few scenes where one cowboy has to suck rattlesnake venom out of another one’s leg. Things would have been much easier for those cowboys if nanosponges had been around at the time. Developed by scientists at the University of California, San Diego, the tiny sponges mimic red blood cells, and are able to soak up lethal toxins – including snake venom and bacteria – from the bloodstream.  Read More

Nanofoams, such as this one made from porous silica, are able to absorb large amounts of e...

Given that scientists are already looking to sea sponges as an inspiration for body armor, perhaps we shouldn’t be surprised that foam is also being considered ... not just any foam, though. Unlike regular foam, specially-designed nanofoams could someday not only be used in body armor, but also to protect buildings from explosions.  Read More

Diagram of the experimental device that sees the osmotic transport of water through a tran...

In November 2009, Norwegian state owned electricity company Statkraft opened the world’s first osmotic power plant prototype, which generates electricity from the difference in the salt concentration between river water and sea water. While osmotic power is a clean, renewable energy source, its commercial use has been limited due to the low generating capacities offered by current technology – the Statkraft plant, for example, has a capacity of about 4 kW. Now researchers have discovered a new way to harness osmotic power that they claim would enable a 1 m2 (10.7 sq. ft.) membrane to have the same 4 kW capacity as the entire Statkraft plant.  Read More

Ever Dry creates a barrier of air between moisture and materials

Ready to be amazed? According to Ultra-tech, a Florida-based containment provider for chemical clean-up and waste management, its new Ultra-Ever Dry coating is an amazing product. The coating is "super-hydrophobic" and "oleophobic," meaning it repels almost any liquid on a wide range of materials, including – but not limited to – hammers to boots and gloves as you'll see in the following video demonstration.  Read More

Swedish researchers believe that size is they key to furthering the development of nanowir...

In a breakthrough that could lead to more efficient and cheaper solar cells, scientists at Sweden's Lund University claim to have identified the ideal diameter for nanowires to convert sunlight into electricity.  Read More

A cross-section transmission electron micrograph of the tiny new transistor

As there is a finite number of transistors that can be effectively packed onto a silicon chip, researchers have been searching for an alternative to silicon that would allow integrated circuit development to continue to keep pace with Moore's Law. Researchers at MIT have recently used indium gallium arsenide to create the smallest transistor ever built from a material other than silicon. The new transistor, which is said to “work well,” is just 22 nanometers long and is a metal-oxide semiconductor field-effect transistor (MOSFET), which is the kind typically used in microprocessors.  Read More

Looking for something? Search our 28,981 articles