Introducing the Gizmag Store

Nanotechnology

Nanofoams, such as this one made from porous silica, are able to absorb large amounts of e...

Given that scientists are already looking to sea sponges as an inspiration for body armor, perhaps we shouldn’t be surprised that foam is also being considered ... not just any foam, though. Unlike regular foam, specially-designed nanofoams could someday not only be used in body armor, but also to protect buildings from explosions.  Read More

Diagram of the experimental device that sees the osmotic transport of water through a tran...

In November 2009, Norwegian state owned electricity company Statkraft opened the world’s first osmotic power plant prototype, which generates electricity from the difference in the salt concentration between river water and sea water. While osmotic power is a clean, renewable energy source, its commercial use has been limited due to the low generating capacities offered by current technology – the Statkraft plant, for example, has a capacity of about 4 kW. Now researchers have discovered a new way to harness osmotic power that they claim would enable a 1 m2 (10.7 sq. ft.) membrane to have the same 4 kW capacity as the entire Statkraft plant.  Read More

Ever Dry creates a barrier of air between moisture and materials

Ready to be amazed? According to Ultra-tech, a Florida-based containment provider for chemical clean-up and waste management, its new Ultra-Ever Dry coating is an amazing product. The coating is "super-hydrophobic" and "oleophobic," meaning it repels almost any liquid on a wide range of materials, including – but not limited to – hammers to boots and gloves as you'll see in the following video demonstration.  Read More

Swedish researchers believe that size is they key to furthering the development of nanowir...

In a breakthrough that could lead to more efficient and cheaper solar cells, scientists at Sweden's Lund University claim to have identified the ideal diameter for nanowires to convert sunlight into electricity.  Read More

A cross-section transmission electron micrograph of the tiny new transistor

As there is a finite number of transistors that can be effectively packed onto a silicon chip, researchers have been searching for an alternative to silicon that would allow integrated circuit development to continue to keep pace with Moore's Law. Researchers at MIT have recently used indium gallium arsenide to create the smallest transistor ever built from a material other than silicon. The new transistor, which is said to “work well,” is just 22 nanometers long and is a metal-oxide semiconductor field-effect transistor (MOSFET), which is the kind typically used in microprocessors.  Read More

The Mujjo leather touchscreen glove

Using a touchscreen in wintertime or on the ski slopes is annoying because screens are designed to work with bare fingers. True, there are numerous gloves available that work with screens, so you don’t freeze your fingers while surfing the internet, but they tend to look like cheap woolly things. Now Mujjo, the Dutch designer label for mobile accessories, has developed leather touchscreen gloves, so you don’t have to choose between style and frostbite.  Read More

The nanoscale metal mesh that makes up the top layer of the sandwich-like PlaCSH material

One of the main reasons that solar cells aren’t more efficient at converting sunlight into electricity is because much of that sunlight is reflected off the cell, or can’t be fully absorbed by it. A new sandwich-like material created by researchers at Princeton University, however, is claimed to dramatically address that problem – by minimizing reflection and increasing absorption, it reportedly boosts the efficiency of organic solar cells by 175 percent.  Read More

Australian scientists have developed a promising new approach to hydrogen storage

Scientists at the University of New South Wales (UNSW), Australia, are developing a novel way to store hydrogen that could help turn it into a viable portable fuel source. The research centers on using synthesized nanoparticles of the compound sodium borohydride (NaBH4 for those who love chemistry), which when encased inside nickel shells exhibits surprising and practical storage properties including the ability to reabsorb hydrogen and release it at much lower temperatures than previously observed, making it an attractive proposition for transport applications.  Read More

A team of UCSB researchers have mimicked the anatomy of a dog's nose to build a highly eff...

Combining nanotechnology and microfluidics, researchers at UC Santa Barbara have created a high-performance detector that draws inspiration from the anatomy of a dog's nose to accurately identify substances – including explosives and narcotics – from very small concentrations of airborne molecules.  Read More

IBM researcher Hongsik Park examines a wafer packed with carbon nanotubes

Silicon’s reign as the standard material for microchip semiconductors may be coming to an end. Using standard semiconductor processes, scientists from IBM Research have succeeded in precisely placing over 10,000 working transistors made from carbon nanotubes onto a wafer surface – and yes, the resulting chip was tested, and it worked. According to IBM, “These carbon devices are poised to replace and outperform silicon technology allowing further miniaturization of computing components and leading the way for future microelectronics.”  Read More

Looking for something? Search our 26,450 articles