Top 100: The most desirable cars of all time


Looking back on a year filled with scientific accomplishment

The close of 2013 gives us an excellent opportunity, though satiated with holiday feasts, to look back on a year that has been filled with scientific accomplishment. So it's time to get comfortable on your Binary Chair, sip your hot cocoa from a phase-change mug while your Foodini prints out a batch of cookies and reflect on science stories of note from the past year.  Read More

The spiky surface of black silicon shred certain types of bacteria, offering the potential...

Originally discovered by accident in the 1980s, black silicon is silicon with a surface that has been modified to feature nanoscale spike structures which give the material very low reflectivity. Researchers have now found that these spikes can also destroy a wide range of bacteria, potentially paving the way for a new generation of antibacterial surfaces.  Read More

UCL graduate student Alice Pyne works on a LEGO-based atomic force microscope (Photo: Inst...

Scanning atomic force microscopes, first introduced into commerce in 1989, are a powerful tool for nanoscale science and engineering. Capable of seeing individual atoms, commercial AFM prices range between US$10K and $1M, depending on the unit's features and capabilities. During the recent LEGO2NANO summer school held at Tsinghua University in Beijing, a group of Chinese and English students succeeded in making a Lego-based AFM in five days at a cost less than $500.  Read More

A new lithographic method has been used to build highly nonlinear optical materials (Photo...

Researchers from the University of Minnesota and Seoul National University have developed a new lithographic method with the help of a very low-tech tool: Scotch Magic tape. This new method, which promises to enhance our ability to fabricate nanostructures, has been used to build highly nonlinear optical materials consisting of sheets of 25 micron (0.001 in) metal blocks separated by nanometer-wide insulating channels. As light squeezes through these channels, incompletely understood plasmonic effects enable novel optical behavior.  Read More

Levitating a nanodiamond with a laser could have implications for quantum computing (Photo...

A recent experiment by researchers at the University of Rochester has managed to suspend a nano-sized diamond in free space with a laser and measure light emitted from it. Like the scientists who recently managed to freeze light in a crystal for up to a minute, these scholars believe their work has applications in the field of quantum computing.  Read More

Professor Jennifer Curtis 'painting' the 30-micron Mini Lisa

Arguably the world’s most famous painting, da Vinci's Mona Lisa has now been copied onto the world’s smallest canvas at the Georgia Institute of Technology. Associate Professor Jennifer Curtis' "Mini Lisa" is one-third the width of a human hair, with details as small as one-eighth of a micron. Mini Lisa demonstrates the flexibility of a new nanolithography technique that can vary the surface concentration of molecules on very small portions of a substrate.  Read More

Imitating the color mechanism of the peacock's feathers could enable next-gen, high resolu...

Structural color, which is the foundation that makes things like a peacock's tail feathers appear iridescent, has been an area of study for scientists as they try to adapt it for use in everyday technologies – only without the “rainbow effect” that makes the colors unstable depending on the angle of view. Now, Researchers at the University of Michigan have mimicked the peacock's color mechanism in an approach that could lead to high resolution reflective color displays and have implications for data storage, cryptography and counterfeiting.  Read More

The Bastard Hogberry was one of the inspirations for the color-changing fibers

Materials scientists at Harvard University and the University of Exeter have invented a new class of polymer fibers that change color when stretched. As is often seen in nature, the color is not the result of pigments, but rather comes from the interference of light within the multilayered fiber. Inspired by Margaritaria nobilis – also known as the Bastard Hogberry – the new fibers may lead to new forms of sensors, and possibly to smart fabrics whose color changes as the fabric is stretched, squeezed, or heated.  Read More

Most liquids literally bounce off surfaces treated with a 'superomniphobic' coating develo...

A team of engineering researchers at the University of Michigan has developed a nanoscale coating that causes almost all liquids to bounce off surfaces treated with it. Consisting of at least 95 percent air, the new "superomniphobic" coating is claimed to repel the broadest range of liquids of any material in its class, opening up the possibility of super stain-resistant clothing, drag-reducing waterproof paints for ship hulls, breathable garments that provide protection from harmful chemicals, and touchscreens resistant to fingerprint smudges.  Read More

3D X-ray image of a twenty micron lithium-ion battery electrode (Image: Brookhaven Nationa...

A new X-ray microscope at Brookhaven National Laboratory is being used to create unparalleled high-resolution 3D images of the inner structure of materials. Using techniques similar to taking a very small-scale medical CAT (computer-assisted tomography) scan, the full field transmission x-ray microscope (TXM) enables scientists to directly observe structures spanning 25 nanometers - three thousand times smaller than a red blood cell - by splicing together thousands of images into a single 3D X-ray image with "greater speed and precision than ever before." This capability is expected to power rapid advances in many fields, including energy research, environmental sciences, biology, and national defense.  Read More

Looking for something? Search our 29,888 articles
Editor's Choice
Product Comparisons