Purchasing new hardware? Read our latest product comparisons
ADVERTISEMENT

Nanoparticles

According to a joint World Health Organization/UNICEF report issued this week, an estimated 768 million people relied on unimproved drinking-water sources in 2011, with 185 million of these relying on surface water to meet their daily drinking-water needs. WHO and UNICEF have set a 2030 target for everyone to have access to a safe drinking-water supply and new water-purifying “nanoscavengers” developed by researchers at Stanford University could help achieve this goal. Read More
Aside from the inconvenience of injecting insulin multiple times a day, type 1 diabetics also face health risks if the dosage level isn’t accurate. A new approach developed by US researchers has the potential to overcome both of these problems. The method relies on a network of nanoscale particles that once injected into the body, can maintain normal blood sugar levels for more than a week by releasing insulin when blood-sugar levels rise. Read More
Because they’re known for being effective killers of bacteria, silver nanoparticles have been finding their way into a wide variety of antimicrobial materials. There are concerns, however, regarding the consequences of those nanoparticles being shed by the material and entering the environment. In particular, there are worries that through continuous low-level exposure to the nanoparticles, bacteria could develop a resistance to them. Now, researchers from Sweden’s KTH Royal Institute of Technology have announced the development of a new type of antibacterial material, that they claim won’t cause such problems. Read More
In some peoples’ opinion, electric cars won’t become truly viable until their batteries offer a lot more driving range, and can be recharged much more quickly than is currently possible. Well, those people may soon be getting their wish. Scientists at the University of Southern California have developed a new type of lithium-ion battery, that they claim holds three times as much energy as a conventional li-ion, and can be recharged in just ten minutes. Read More
Silver is known for its antibacterial qualities, and has thus found its way into water filters created at institutions such as Stanford and McGill universities. Given that these filters are often used in developing nations, however, it would be nice if they could also contribute to the local economy – instead of being just one more thing that’s brought in from outside. Well, that’s just the idea behind the University of Virginia’s PureMadi filters and MadiDrops. Read More
Gold nanoparticles have already shown promise in precisely highlighting brain tumors, “blowing up” individual diseased cells, and developing a lung cancer breath test. Now researchers have created gold nanoparticles that allow an alpha particle-emitting element to be directed to small cancer tumors. The researchers say the gold coating keeps the powerful radioactive particles in place at the cancer site so they do negligible damage to healthy organs and tissue. Read More
Carbon capture and sequestration in underground reservoirs isn’t the most practical or cost effective way to reduce atmospheric CO2 levels. It would be much simpler if CO2 could be quickly and cheaply converted into a harmless, solid mineral before it is released into the atmosphere. A team from the U.K.’s Newcastle University may have stumbled across a way to achieve this thanks to the humble sea urchin. Read More
Researchers at the University of Buffalo have created spherical silicon nanoparticles they claim could lead to hydrogen generation on demand becoming a “just add water” affair. When the particles are combined with water, they rapidly form hydrogen and silicic acid, a nontoxic byproduct, in a reaction that requires no light, heat or electricity. In experiments, the hydrogen produced was shown to be relatively pure by successfully being used to power a small fan via a small fuel cell. Read More

U.S. scientists are developing a technique that will target and kill cancer cells while simultaneously treating others in the same sample. Centered on fine-tuning the use of cancer destroying nanobubbles, the research holds promise for treating cancer patients in a way that’s far more targeted than chemotherapy. Read More

A team of researchers at Rice University has developed a new technology that uses light-absorbing nanoparticles to convert solar energy directly into steam. Even though it is already significantly more efficient than solar panels at producing electricity, the technology will likely find its first applications in low-cost sanitation, water purification and human waste treatment for the developing world. Read More
ADVERTISEMENT
ADVERTISEMENT