Advertisement
more top stories »

Nanoparticles


— Aircraft

Nanoparticle coating could let aircraft engines last three times longer

The higher the temperature at which an aircraft engine is able to run, the more efficiently it uses fuel. In order to run at those high temperatures, the metal components of airplane engines are presently treated with heat-shielding coatings. Scientists at Sweden's University West, however, are developing a new such coating that is said to be far more effective than anything presently used – it could extend the service life of engines by 300 percent. Read More

Bacteria combined with gold to produce "living material"

Scientists at MIT are developing hybrid materials that are a cross between living bacterial cells and non-living components such as gold nanoparticles or quantum dots. The resulting "living materials" are able to respond to their environment like regular living cells, while also doing things like conducting electricity or emitting light. Read More
— Environment

Nano technique boosts plant energy production and creates plant biosensors

In 2010, Stanford University researchers reported harnessing energy directly from chloroplasts, the cellular "power plants" within plants where photosynthesis takes place. Now, by embedding different types of carbon nanotubes into these chloroplasts, a team at MIT has boosted plants' ability to capture light energy. As well as opening up the possibility of creating "bionic plants" with enhanced energy production, the same approach could be used to create plants with environmental monitoring capabilities. Read More
— Electronics

Pomegranate-inspired electrode could mean longer lithium-ion battery life

Though the use of silicon in lithium-ion batteries promises a whole new world of energy storage, it also poses several problems to a battery's durability and overall performance. A new electrode design inspired by clusters of pomegranate seeds and developed by researchers at the Department of Energy's National Accelerator Laboratory (SLAC) and Stanford University, overcomes some of these obstacles, bringing lighter and more powerful batteries closer to reality. Read More
— Medical

Charged polymers unlock door to deliver nanoparticles to cancer cells

In recent years, we've seen various research efforts looking to specifically target cancer cells as a replacement for the shotgun approach employed by chemotherapy that also damages healthy cells. The trick is to develop a delivery vehicle that identifies and targets only cancer cells, while ignoring the healthy ones. Researchers have found charged polymers have this ability, opening the door for nanoparticles containing cancer-fighting drugs to deliver their payload directly to the cancer cells. Read More
— Electronics

MIT researchers clarify things with new transparent display technology

There are a number of approaches currently used to create transparent displays, such as transparent OLED and LCD displays or simple reflection, however, most are limited in terms of viewing angle. Researchers at MIT have come up with a new system that is low-cost and offers a wide angle of view with the projected image appearing on the transparent material itself. Read More
— Science

Two-in-one nanoparticles exploit tumor cells to precisely deliver multiple drugs

A common strategy for treating tumors is combining two or more drugs, which has the effect of decreasing toxicity and increasing the synergistic effects between the drugs. However, the efficacy of this kind of cocktail treatment suffers when the drugs require access to different parts of the cell, a bit like fighting a battle by depositing all your archers on the same spot as your infantrymen. By making use of nanoparticle-based carriers, researchers at North Carolina State University are able to transport multiple drugs into cancerous cells optimally and precisely, in maneuvers that any field commander would be proud of. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement