Decision time? Check out our latest product comparisons

Nanoparticles

A hybrid nanomaterial synthesized by combining copper sulfide nanoparticles and SWNTs can ...

We’ve seen nanomaterials that can be used to convert light into electricity and others that can convert heat into electricity. Now researchers from the University of Texas at Arlington and Louisana Tech University have created a hybrid nanomaterial that can do both. By pairing the material with microchips, the researchers say it could be used in self-powered sensors, low-power electronic devices, and biomedical implants.  Read More

A male Giant Blue Morpho (Photo: Jo McCulty, courtesy of Ohio State University)

Butterfly wings cannot be very far behind geckos' toes so far as sources of inspiration for biomimicry research goes. Various properties of the wings of lepidopterans have triggered research into banknote forgery prevention, light reflection and solar cells. New research from Ohio State University suggests the delicate membranes may hold clues to dirt-resistance surfaces.  Read More

A rather larger laser (Photo: Andrea Pacelli)

Researchers at Northwestern University have developed a laser the size of a virus particle that can operate at room temperature. The "nanolaser," which uses gold nanoparticles instead of mirrors, is claimed to be the first demonstration to make use of a so-called bowtie arrangement of metal nanoparticles, though nano-scale lasers have been previously demonstrated.  Read More

Clothing treated with the CatClo laundry additive can remove nitrogen oxides from the air

A laundry additive created by researchers from the University of Sheffield and the London College of Fashion turns clothing into a photocatalytic material that can help remove nitrogen oxides (NOx) from the air. One of the most prominent air pollutants, nitrogen oxides are emitted from the exhausts of ICE-powered vehicles and aggravate asthma and other respiratory diseases. The researchers claim one person getting around town in clothing treated with the additive for a day would be able to remove roughly the same amount of nitrogen oxides produced by the average family car each day.  Read More

A transmission electron microscopy image of the photoluminescent nanoparticles

Deep-tissue optical imaging may soon be getting easier – or at least, the images may soon be getting sharper. That’s because an international team of scientists have developed photoluminescent nanoparticles that are able to shine through over three centimeters (1.2 inches) of biological tissue. If attached to anomalies deep beneath the skin, the nanoparticles could allow those anomalies to be seen more clearly from the outside.  Read More

Violent bubbling in boiling water may just be a thing of the past (Image: Northwestern Uni...

You know that thing that water does when it boils? The thing with the bubbles? Turns out, it doesn't really need to do that at all, with scientists finding a way to make boiling water a completely bubble-free zone. Researchers from Northwestern University, King Abdullah University of Science and Technology in Saudi Arabia and Melbourne University in Australia teamed up to prevent water from bubbling when it boils by using tiny spheres coated with a hydrophobic material.  Read More

The oil and water separation technique uses permanent magnets immersed in a reservoir cont...

Possibly the only good thing to come out of the Deepwater Horizon disaster is the subsequent increase in research into finding more effective ways to clean up oil spills, including such initiatives as the X PRIZE Foundation's Wendy Schmidt Oil Cleanup X CHALLENGE. Joining the list is a new method devised by researchers at MIT who propose separating oil and water using magnets. The new technique would allow the oil to be recovered to help offset the costs of the cleanup operation.  Read More

The tiny hairs on the 'nano-velcro' particles trap heavy metal ions in their grasp allowin...

While progress has been made in reducing the amount of heavy metal pollution, the very nature of heavy metal contamination means it continues to be a problem in waterways around the world. Conventional heavy metal contamination detection methods require sending samples off to a lab for analysis on expensive equipment. Now a Swiss-American team has developed a cheap way to immediately ascertain the levels of heavy metals in lakes and rivers and the fish pulled out of them.  Read More

The Whispering Gallery in St. Paul's Cathedral (Image: Femtoquake /CC 3.0)

Researchers led by Professor Stephen Arnold at Polytechnic Institute of New York University have developed a new ultra-sensitive biosensor. Currently undergoing commercial development, the sensor is designed to inexpensively identify viruses in a doctor’s office within a matter of minutes instead of the weeks needed by conventional techniques ... and it can detect even the smallest RNA virus particle, MS2, which weighs only six attograms (10-18 grams).  Read More

The above image of Playboy model Lena Söderberg, ubiquitous to image processing experiment...

Researchers at Singapore's Institute of Materials Research and Engineering (IMRE), an institute of the Agency for Science, Technology and Research (A*STAR), have developed an innovative method of creating sharp, full-spectrum color images at 100,000 dots per inch (DPI). The method achieves this without need of ink or dye and bests the current crop of industrial inkjet and laserjet printers which are only able to offer up to 10,000 DPI. The new research also promises to outperform research-grade methods, which are able to dispense dyes for only single color images.  Read More

Looking for something? Search our 29,012 articles