Purchasing new hardware? Read our latest product comparisons

Nanoparticles

Research team member Dr. Katarzyna Wybranska, with a wound dressing treated with the gold ...

We've been hearing a lot about the antibacterial qualities of silver, with silver nanoparticles finding use in everything from water filters to food packaging. Unfortunately, there are also concerns about the toxicity of those particles, particularly when they enter our bodies. Now, however, Polish scientists have developed what they claim is a safer alternative – an antibacterial coating that kills microbes using gold.  Read More

The new hydrogel type can be seen in these electron microscopy images, which show the nano...

A team of MIT researchers has developed a new, self-healing hydrogel that doesn’t require surgical implantation, but can be injected using a syringe. The new gel, which can carry two drugs at once, allows for more convenient treatment of numerous conditions.  Read More

Pulsed near infrared light (shown in red) is shone onto a tumour (white) that is encased i...

For some time, the potential of gold nanoparticles as a diagnostics and imaging tool has been known to scientists, but new research suggests they could prove even more useful than previously thought. A team at the University of Leeds has discovered that shaping the particles in the form of nanotubes sees them take on a number of new properties, including the ability to be heated up to destroy cancer cells.  Read More

An electron microscope image of the film showing the embedded bismuth ferrite nanoparticle...

Researchers from South Korea have developed a thin, highly-flexible film that could enable a new generation of wearable devices that wrap around your finger or wrist. The multiferroic film even amplified the properties inherent in the bismuth ferrite it was made from, and the enhanced properties were preserved when the film was curved into a cylindrical shape.  Read More

Micro-motor powered nanobots have delivered a nanoparticle compound directly into the gut ...

Researchers working at the University of California, San Diego have claimed a world first in proving that artificial, microscopic machines can travel inside a a living creature and deliver their medicinal load without any detrimental effects. Using micro-motor powered nanobots propelled by gas bubbles made from a reaction with the contents of the stomach in which they were deposited, these miniature machines have been successfully deployed in the body of a live mouse.  Read More

New research shows that exposure to silicon-based nanoparticles may negatively influence c...

Due to its huge potential in applications ranging from cheaper vaccinations to energy-storing car panels, there's plenty of excitement surrounding the emergence of nanotechnology. But a team of scientists are urging caution, with a study conducted at the Technion-Israel Institute of Technology suggesting that exposure to silicon-based nanoparticles may play a role in the development of cardiovascular disease.  Read More

Can magnetically-piloted nanoparticles become an effective treatment for inoperable, deep-...

A new experimental, non-invasive medical technique is promising to precisely deliver drug-carrying metal nanorods anywhere inside the body and image tissue with cellular resolution. If perfected, the approach could be used to treat inoperable deep-tissue tumors, brain trauma, and vascular or degenerative diseases.  Read More

Researchers have developed coated magnetic nanoparticles that can be used to help regenera...

When a bone is severely broken in the human body, or a bone-fused prosthesis is implanted, a bone graft is also often required to ensure a solid mechanical repair. However, a graft that removes bone from another area of the body can be a painful and invasive procedure, and the mechanical stimulation required for continued bone regeneration in post-operative therapy becomes problematic if a patient is severely immobilized. To address these problems, researchers have discovered that coating magnetic nanoparticles with proteins and then directing them magnetically to the site of the injury can help stimulate stem cells to regenerate bone.  Read More

Artist's rendering of synthetic platelets that mimic, and outperform, natural platelets (I...

The skin is the body's first line of defense against infection. And when this barrier is broken, or an internal organ is ruptured, it is the process of coagulation, or clotting, which relies largely on blood cells called platelets, that seals the breach and stems the flow of blood. Researchers at UC Santa Barbara have now synthesized nanoparticles that mimic the form and function of platelets, but can do more than just accelerate the body's natural healing processes.  Read More

A new compound could help end our over-reliance on antibiotics to fight bacterial infectio...

It’s no secret we are facing an antibiotic crisis. Overuse has caused widespread antibiotic resistance, leading the World Health Organisation to declare we are "headed for a post-antibiotic era, in which common infections and minor injuries which have been treatable for decades can once again kill." Scientists from the University of Bern have developed a new non-antibiotic compound that treats severe bacterial infections and avoids the problem of bacterial resistance.  Read More

Looking for something? Search our 31,674 articles