Shopping? Check out our latest product comparisons

Nanocrystals

Examples of the microparticles, shown here much larger than actual size

There's now yet another potential weapon in the war against counterfeiting. Scientists at MIT have developed tiny color-striped microparticles that could be used to verify the authenticity of currency, medication, consumer goods, or almost anything else.  Read More

Smart Glass under test conditions at Berkeley Lab

Researchers at the Lawrence Berkeley National Laboratory have produced a "smart" glass coating that can be selectively controlled to block visible light, heat-producing near-infrared (NIR) light, or both, by applying a small electrical charge to it. The ability to do this dynamically has the potential to deliver improved lighting, heating, and cooling efficiency in buildings, thereby maximizing energy savings and still providing bright and well lit environments in different weather conditions.  Read More

False-color scanning electron microscope images of some of the crystalline flowers

When we think of crystals, most of us probably either picture spiky things like snowflakes, or cube-shaped objects like grains of sugar. Researchers from the Harvard School of Engineering and Applied Sciences, however, have recently coaxed barium carbonate crystals to grow into very miniature replicas of soft, curved flowers.  Read More

A UCR researcher is taking inspiration from the teeth of a marine snail to build the techn...

Inspired by the tough teeth of a marine snail and the remarkable process by which they form, assistant professor David Kisailus at the University of California, Riverside is working toward building cheaper, more efficient nanomaterials. By achieving greater control over the low-temperature growth of nanocrystals, his research could improve the performance of solar cells and lithium-ion batteries, lead to higher-performance materials for car and airplane frames, and help develop abrasion-resistant materials that could be used for anything from specialized clothing to dental drills.  Read More

Scientists have developed new nanocrystals that allow solar panels to generate both electr...

At first glance, photovoltaic solar panels are brilliant. They’re self-contained, need no fuel and so long as the sun is shining, they make lots of lovely electricity. The trouble is, they’re expensive to make, batteries are poor storage systems for cloudy days, and the panels have a very short service life. Now, Dr. Mikhail Zamkov of Ohio's Bowling Green State University and his team have used synthetic nanocrystals to make solar panels more durable as well as capable of producing hydrogen gas.  Read More

Silicone glued to the center of a Teflon-coated frying pan (Image: Claudia Eulitz, Copyrig...

Polytetrafluoroethylene (PTFE) is best known by the DuPont brand name Teflon. Whatever it is called, PTFE is the third slipperiest solid known – the poster child for non-stick, non-reactive, non-friction, non-conducting, high-temperature, and generally high-performing polymers. Silicone also has a nearly non-bondable surface – if you try to paint a silicone sealant, it simply pops off as the paint dries. In particular, creating a strong bond between PTFE and silicone has never been accomplished, even in the chemical laboratory. Until now.  Read More

Looking for something? Search our 28,158 articles