Shopping? Check out our latest product comparisons

Muscular Dystrophy

Pumped-up muscle tissue (in blue) in a high performing 'mighty mouse'

He can't fly just yet, but a team of scientists have made a big step towards creating a real-life Mighty Mouse. Researchers at the Salk Institute for Biological Studies, along with two Swiss institutions, Ecole Polytechnique Federale de Lausanne (EPFL) and the University of Lausanne, created a batch of super-strong mice and worms by tweaking a gene that normally inhibits muscle growth.  Read More

Muscle cells of untreated mice with muscular dystrophy (left) show little utrophin in cell...

Duchenne Muscular Dystrophy is the most common and severe childhood form of muscular dystrophy (MD), affecting one in 3,500 boys. The disease progressively weakens muscles cells and tissues until muscle degradation is so severe that the patient dies, most often in their late teens or twenties. Scientists at Brown University in Providence, Rhode Island and the University of Pennsylvania, hope their research into the human protein, biglycan, will ultimately improve the condition of muscular dystrophy sufferers. Their studies have shown that biglycan significantly slows muscle damage and improves function in mice with the Duchenne genetic mutation. Human clinical trials will be the next step.  Read More

The no longer wheelchair-bound Hayden Allen puts REX through its paces

Seemingly simple things like talking to people at eye level and reaching things on shelves can be a huge drawback for those in wheelchairs. Sitting in a wheelchair for extended periods can also lead to the increased risk of certain infections and blood circulation problems. A robotic exoskeleton called REX puts wheelchair users back on their feet, enabling a person to stand, walk and go up and down stairs and slopes.  Read More

Looking for something? Search our 27,824 articles