Photokina 2014 highlights

Muscle

We can change our DNA in a matter of minutes by simply exercising (Photo: SuperFantastic)

While our DNA is determined at conception, researchers reporting in the March issue of Cell Metabolism, say that we can beneficially alter our DNA molecules in a matter of minutes, simply by exercising. Furthermore, caffeine may also offer similar effects.  Read More

New technology is able to capture 3D images of muscle contractions in less time and more d...

Current medical imaging technology misses important data regarding muscle contraction, including the ways in which a muscle’s shape changes when it contracts, how the muscle bulges, and how its internal fibers become more curved ... or at least, so Simon Fraser University (SFU)’s associate professor James Wakeling tells us. In order to remedy that situation, he has developed a new method of imaging contracting muscles, that he claims should allow researchers to observe never-before-seen details of muscle activation.  Read More

Pumped-up muscle tissue (in blue) in a high performing 'mighty mouse'

He can't fly just yet, but a team of scientists have made a big step towards creating a real-life Mighty Mouse. Researchers at the Salk Institute for Biological Studies, along with two Swiss institutions, Ecole Polytechnique Federale de Lausanne (EPFL) and the University of Lausanne, created a batch of super-strong mice and worms by tweaking a gene that normally inhibits muscle growth.  Read More

Scientists have created a tiny artificial muscle, that could be used in motors to propel n...

We've been hearing a lot lately about the possibility of treating medical conditions using nanobots - tiny robots that would be injected into a patient's bloodstream, where they would proceed to travel to their targets, not unlike the microscopic submarine in the movie Fantastic Voyage ... except nanobots wouldn't be crewed by tiny shrunken-down humans. One challenge that still needs to be met, however, is figuring out a way of propelling the devices. Well, we may now be closer to a solution. Yesterday, development of a new type of nanoscale artificial muscle was announced, which works like the muscles in an elephant's trunk. These could conceivably be used in nanobots, to whip them along using a rotating flagellum - a tiny sperm-like tail, in other words.  Read More

A scanning electron microscope image of the nanowire-alginate composite scaffolds, showing...

Around the world, scientists have been working on ways of replacing the heart tissue that dies when a heart attack occurs. These efforts have resulted in heart "patches" that are made from actual cardiomyocytes (heart muscle cells), or that encourage surrounding heart cells to grow into them. One problem with some such patches, however, lies in the fact that that they consist of cardiomyocytes set within a scaffolding of poorly-conductive materials. This means that they are insulated from the electrical signals sent out by the heart, so they don't expand and contract as the heart beats. Scientists at MIT, however, may be on the way to a solution.  Read More

Researcher Dr. Daisy van der Schaft of Eindhoven University of Technology working on the p...

Most people who have sweated it out in the gym trying to add a bit of muscle definition to their bodies will know just how difficult such a task is, but trying to grow muscle tissue with a real muscle structure complete with blood vessels in the laboratory has proven to be an even more difficult brief for researchers. Now a team from the Eindhoven University of Technology (TU/e) has done just that, paving the way for the creation of engineered muscle tissue that can be implanted into patients who have lost muscle tissue through accidents or surgery.  Read More

The robotic tentacle, created as part of the Octopus Project (Photo: Massimo Brega)

Some living organisms feature an unusual muscle structure, which allows them to control the stiffness of their body, or various parts of it. Examples include elephants' trunks, our tongues, and octopus tentacles. Researchers working on the Octopus Project have so far successfully designed a robotic tentacle, with the ultimate aim of creating a full-bodied robotic octopus.  Read More

Academics from the University of Manchester have developed a process of creating working h...

Academics from the University of Manchester have developed a process of creating working human muscle tissue from sea squirts. The research holds promise for the engineering of muscles, ligaments and nerves from cellulose which is usually found in plants and is the main component of paper and plant based textiles such as cotton and linen. The creation of muscle from scratch along with the ability to repair existing muscle has the potential to improve the lives of millions of people around the world.  Read More

Scientists have used biosynthetic muscle fibers to observe the changes that polymers exhib...

Scientists tasked with creating better plastic films have been at a loss when it comes to observing how synthetic polymers react under mechanical stress – the polymers are just too small for a microscope to keep track of while being stretched. Now a team of physicists from Technische Universitaet Muenchen (TUM) has come up with a solution. They’re using a muscle filament protein to build polymer networks that can be observed by a microscope, and by doing so have already determined why some polymers get tougher with repeated stress, while others get softer.  Read More

The active electrode book - the four slots close in around the nerve roots like the pages ...

Paraplegics may soon find it easier to exercise their leg muscles through activities such as cycling and rowing thanks to a tiny microchip implanted in the spinal canal. Dubbed the Active Book because of its booklike appearance, the microchip combines electrodes and a muscle stimulator in one unit the size of a child's fingernail.  Read More

Looking for something? Search our 28,548 articles