Advertisement

Muscle

— Science

Crumpled graphene and rubber combined to form artificial muscle

Despite its numerous wondrous properties, a propensity to stick together and be difficult to flatten out once crumpled can make working with graphene difficult and limit its applications. Engineers at Duke University have now found that by attaching graphene to a stretchy polymer film, they are able to crumple and then unfold the material, resulting in a properties that lend it to a broader range of applications, including artificial muscles. Read More
— Science

Wax-infused "nanoyarn" used to create artificial muscles

An international team of scientists based at the University of Texas, Dallas (UTD), has developed a new type of artificial muscle created from carbon “nanotubes” – tiny hollow cylinders constructed from the same graphite layers found in the core of a standard pencil. Despite measuring 10,000 times less than the diameter of a human hair, the new muscles can lift more than 100,000 times their own weight, which amounts to approximately 85 times the power of a natural muscle of equivalent size. Read More
— Science

Vibrating armband used to help athletes develop muscle memory

“Muscle memory” is the process in which a certain motor task is repeated to such an extent that it can eventually be performed without conscious effort. It comes in handy for all sorts of activities, but is particularly important to athletes – a tennis player can hardly concentrate on the game, for instance, if they’re constantly thinking about how to move their arm every time they return the ball. Now, engineers from Imperial College London have created an armband device known as Ghost, designed to assist athletes in forming optimum muscle memories. Read More
— Robotics

Light-activated skeletal muscle “blurs the boundary between nature and machines”

In Sir Arthur C. Clarke’s 1972 novel Rendezvous with Rama, the explorers of a seemingly deserted alien spaceship passing through our Solar System encounter a strange three-legged creature that turns out to be an organic robot. In the ‘70s, this seemed so incredible that it could only be the product of an alien civilization thousands of years ahead of us. In 2012, scientists at MIT and the University of Pennsylvania are proving otherwise by starting work on organic robots here on Earth. Using genetically engineered muscle tissue that responds to light, they are blurring the line between animal and machine at the cellular level. Read More
— Good Thinking

Student-designed surgical device could be the "future of suture"

Just about every major operation on the chest or abdomen requires surgeons to cut through the fascia, which is a layer of muscle located immediately beneath the skin. Closing these wounds can be very difficult – sewing up an incision in the fascial layer has been likened to trying to push a needle through shoe leather. If proper care isn’t taken, however, potentially lethal complications can result. Now, a team of undergraduate students from Johns Hopkins University have created a device that should make the procedure easier and safer. Read More
— Science

"Exercise" shown to improve the performance of lab-grown muscle implants

We all know that you need to exercise if you want to develop your muscles. As it turns out, however, exercise also makes lab-grown muscle implants more effective when introduced to the body. Scientists from North Carolina’s Wake Forest Baptist Medical Center have discovered that after being gently expanded and contracted, implants placed in lab animals were better able to stimulate new muscle growth than implants that were left “unexercised.” Read More
— Science

"Artificial muscles" shown to eliminate vibrations with vibrations of their own

A lot of devices, such as shock absorbers, currently use elastomers to help minimize vibrations. While the malleable, yielding qualities of these materials do indeed allow them to absorb energy that would otherwise take the form of rattles and jolts, they are nonetheless passive – basically, they just sit there. Researchers from Germany’s Fraunhofer Institute for Structural Durability and System Reliability, however, are developing a new system in which elastomers actually “fight back” against vibrations. Read More
— Health & Wellbeing

Quick 3D motion-capture system developed for imaging muscles

Current medical imaging technology misses important data regarding muscle contraction, including the ways in which a muscle’s shape changes when it contracts, how the muscle bulges, and how its internal fibers become more curved ... or at least, so Simon Fraser University (SFU)’s associate professor James Wakeling tells us. In order to remedy that situation, he has developed a new method of imaging contracting muscles, that he claims should allow researchers to observe never-before-seen details of muscle activation. Read More
— Science

Researchers create "mighty mouse" with gene tweak that doubles muscle strength

He can't fly just yet, but a team of scientists have made a big step towards creating a real-life Mighty Mouse. Researchers at the Salk Institute for Biological Studies, along with two Swiss institutions, Ecole Polytechnique Federale de Lausanne (EPFL) and the University of Lausanne, created a batch of super-strong mice and worms by tweaking a gene that normally inhibits muscle growth. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement