Shopping? Check out our latest product comparisons

Muscle

The AMES device, which has just received FDA approval

Last week, the US Food and Drug Administration granted clearance to a new device that could be of considerable aid to stroke victims or people with partial spinal cord injuries. Created by Dr. Paul Cordo of the Oregon Health & Science University (OHSU) in collaboration with OHSU spinoff company AMES, the "AMES device" reportedly helps the brain get paralyzed muscles moving again.  Read More

Artist’s concept of a flat interface nerve electrode (FINE)

Artificial limbs have come a long way in recent years with the development of prostheses that can be controlled directly by the patient’s nerves. The problem is, links between living nerves and the prostheses break down over time, which makes permanent attachment and practical control difficult. To understand why this happens and to help give patients more control over their prostheses, DARPA has instituted a number of programs aimed at improving neural interfaces and allowing amputees to have better control of advanced prostheses in the near term.  Read More

Crumpled graphene layered on a flexible polymer (Photo: Duke University)

Despite its numerous wondrous properties, a propensity to stick together and be difficult to flatten out once crumpled can make working with graphene difficult and limit its applications. Engineers at Duke University have now found that by attaching graphene to a stretchy polymer film, they are able to crumple and then unfold the material, resulting in a properties that lend it to a broader range of applications, including artificial muscles.  Read More

Individual nanotubes can be 10,000 times smaller than the diameter of a human hair, yet 10...

An international team of scientists based at the University of Texas, Dallas (UTD), has developed a new type of artificial muscle created from carbon “nanotubes” – tiny hollow cylinders constructed from the same graphite layers found in the core of a standard pencil. Despite measuring 10,000 times less than the diameter of a human hair, the new muscles can lift more than 100,000 times their own weight, which amounts to approximately 85 times the power of a natural muscle of equivalent size.  Read More

Ghost is a prototype vibrating armband, designed to help athletes with muscle memory

“Muscle memory” is the process in which a certain motor task is repeated to such an extent that it can eventually be performed without conscious effort. It comes in handy for all sorts of activities, but is particularly important to athletes – a tennis player can hardly concentrate on the game, for instance, if they’re constantly thinking about how to move their arm every time they return the ball. Now, engineers from Imperial College London have created an armband device known as Ghost, designed to assist athletes in forming optimum muscle memories.  Read More

Muscle cell undergoing light activation (Image: MIT)

In Sir Arthur C. Clarke’s 1972 novel Rendezvous with Rama, the explorers of a seemingly deserted alien spaceship passing through our Solar System encounter a strange three-legged creature that turns out to be an organic robot. In the ‘70s, this seemed so incredible that it could only be the product of an alien civilization thousands of years ahead of us. In 2012, scientists at MIT and the University of Pennsylvania are proving otherwise by starting work on organic robots here on Earth. Using genetically engineered muscle tissue that responds to light, they are blurring the line between animal and machine at the cellular level.  Read More

The FastStitch is a prototype device, designed to facilitate the closure of surgical incis...

Just about every major operation on the chest or abdomen requires surgeons to cut through the fascia, which is a layer of muscle located immediately beneath the skin. Closing these wounds can be very difficult – sewing up an incision in the fascial layer has been likened to trying to push a needle through shoe leather. If proper care isn’t taken, however, potentially lethal complications can result. Now, a team of undergraduate students from Johns Hopkins University have created a device that should make the procedure easier and safer.  Read More

Wake Forest's muscle-implant-stretching machine

We all know that you need to exercise if you want to develop your muscles. As it turns out, however, exercise also makes lab-grown muscle implants more effective when introduced to the body. Scientists from North Carolina’s Wake Forest Baptist Medical Center have discovered that after being gently expanded and contracted, implants placed in lab animals were better able to stimulate new muscle growth than implants that were left “unexercised.”  Read More

An illustration depicting one of the lattice-like electrodes, over top of one of the elast...

A lot of devices, such as shock absorbers, currently use elastomers to help minimize vibrations. While the malleable, yielding qualities of these materials do indeed allow them to absorb energy that would otherwise take the form of rattles and jolts, they are nonetheless passive – basically, they just sit there. Researchers from Germany’s Fraunhofer Institute for Structural Durability and System Reliability, however, are developing a new system in which elastomers actually “fight back” against vibrations.  Read More

We can change our DNA in a matter of minutes by simply exercising (Photo: SuperFantastic)

While our DNA is determined at conception, researchers reporting in the March issue of Cell Metabolism, say that we can beneficially alter our DNA molecules in a matter of minutes, simply by exercising. Furthermore, caffeine may also offer similar effects.  Read More

Looking for something? Search our 27,750 articles