Advertisement

Moore's Law

Materials

Super flat material could extend life of Moore's Law

Researchers could be fending off the demise of Moore's Law with the help of a new material that allows electrons to move from point A to point B faster. Engineers at the University of Utah discovered a new kind of flat semiconducting material made of tin monoxide that is only one-atom thick, allowing electrical charges to pass through it faster than silicon or other 3D materials.Read More

Electronics

IBM creates world's smallest magazine cover

IBM has unveiled the world’s smallest magazine cover at the USA Science and Engineering Festival in Washington, DC. Certified by the Guinness Book of World Records, the micro magazine is a reproduction of the cover of the March 2014 issue of National Geographic Kids and is many times smaller than a grain of salt at just 11 × 14 micrometers. Why, you ask? The tiny cover was created to demonstrate potential of a new nano-scale manufacturing technology, as well to encourage young people’s interest in science and technology.Read More

Science

Scientists create organic 'molecular computer'

Researchers from Japan and the Michigan Technological University have succeeded in building a molecular computer that, more than any previous project of its kind, can replicate the inner mechanisms of the human brain, repairing itself and mimicking the massive parallelism that allows our brains to process information like no silicon-based computer can.Read More

Computers

MIT developing self-assembling computer chips

The photolithography process used to create the features on computer chips has remained largely unchanged in the last 50 years. But as chip manufacturers continue to cram more and more circuits onto a chip the limitation of this process is rapidly being reached. Potential solutions to keep apace with Moore’s Law include using DNA molecules as scaffolding, replacing copper interconnects with graphene and using plasma beams. Now researchers at MIT are developing a process that could see tiny circuits being created using molecules that automatically arrange themselves into useful patterns.Read More

Electronics

Nanowires could be the key to the transistors of tomorrow

Researchers agree that chip manufacturers will soon reach a hard limit in terms of transistor miniaturization, disproving rule-of-thumb predictions that transistor density roughly doubles every 18 to 24 months. But a collaboration between IBM, Purdue University and the University of California in Los Angeles may have found a way to squeeze more transistor in the same area by building them vertically rather than horizontally.Read More

Computers

Intel unveils world's first working 22nm chips

During the keynote address at the Intel Developer Forum recently held in San Francisco, Intel CEO Paul Otellini displayed a silicon wafer containing the world's first working chips featuring 22nm transistor technology, which include both densely packed SRAM memory and logic circuits to be used in future Intel microprocessors.Read More

Computers

Intel release eco-friendly, high-performance 45nm processors

November 13, 2007 Intel has unveiled sixteen new chips incorporating 45nm Hafnium-based high-k metal gate transistors that are smaller, faster and more eco-friendly than previous generations. Gordon E. Moore, co-founder of Intel, has labeled the breakthrough as the biggest transistor advancement in 40 years with the improvement expected to further extend Moore’s Law, which he originally described in 1965.Read More

Computers

World’s First Programmable Processor to deliver Teraflops performance with energy efficiency

March 4, 2007 Just how much computing power are we going to have at our fingertips a decade? Given the inevitable continuation of Moore’s Law, on the surface, quite clearly we’ll have almost supercomputer power available, and the latest news from Intel suggests the path forward. Intel has developed the world’s first programmable processor that delivers supercomputer-like performance from a single, 80-core chip not much larger than the size of a finger nail while using less electricity than most of today’s home appliances. This is the result of the company’s “Tera-scale computing” research aimed at delivering Teraflops -- or trillions of calculations per second -- performance for future PCs and servers. Technical details of the Teraflops research chip were presented at the annual Integrated Solid State Circuits Conference (ISSCC) in San Francisco. Be sure to catch the flash demo of the Architectural vision on the bottom right hand side of this page. Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning